Search

Mälardalen University

Our 20,000 students read courses and study programmes in Business, Health, Engineering and Education. We conduct research within all areas of education and have internationally outstanding research in future energy and embedded systems. Our close cooperation with the private and public sectors enables us at MDU to help people feel better and the earth to last longer. Mälardalen University is located on both sides of Lake Mälaren with campuses in Eskilstuna and Västerås.

29 RESULTS

Safety critical software

The purpose is to give the students an overview of issues and methods for development and assurance of safety-critical software, including details of selected technologies, methods and tools. The course includes four modules: Introduction to functional safety; knowledge that give increased understanding of the relationship between Embedded systems / safety-critical system / accidents / complexity / development models (development lifecycle models) / certification / “the safety case”. Analysis and modelling methods; review of analysis and modelling techniques for the development of safety-critical systems. Verification and validation of safety critical software, methods and activities to perform verification and validation. Architectures for safety critical systems. Safety as a design constraint.  

Smart factories

A smart factory is an industrial manufacturing facility that uses technology such as the Internet of Things (IoT), automation, and artificial intelligence (AI) to increase productivity and profitability. Smart factories use sensors and other technology to collect, share, and analyze data that helps improve production, increase safety, reduce energy consumption, and improve product quality. You will learn The various major technological areas of smart factories Fundamental principles of operation and control of smart factories Understand and describe how smart machines and products interact in smart factories

Statistical Analysis in Industrial Systems

In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.

Systems-of-Systems Engineering

This course makes you acquainted with the concept of systems-of-systems (SoS), which means that independent systems are collaborating. It gives you an understanding why SoS is an important topic in the current digitalisation and provides a theoretical and practical foundation for understanding important characteristics of SoS. It also gives you a deeper knowledge in a number of key concerns that need to be considered when engineering SoS. Admitted students may join the course any time between September 2 and October 6, 2024. With the recommended study pace of 25%, the course would take approximate seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than January 19, 2025.

Trustworthy Artificial Intelligence

AI systems are increasingly being integrated into various industrial processes, including manufacturing, logistics, and autonomous vehicles. Trustworthy AI ensures that these systems operate reliably, reducing the risk of accidents or costly errors.  Trustworthy AI helps companies comply with ethical standards and legal regulations. It ensures that AI systems do not discriminate against certain groups, violate privacy rights, or engage in other unethical behaviors. Trustworthy AI System course can support in the development of more advanced AI technologies, fostering research collaboration, and attracting talent.