Search

Mälardalen University

Our 20,000 students read courses and study programmes in Business, Health, Engineering and Education. We conduct research within all areas of education and have internationally outstanding research in future energy and embedded systems. Our close cooperation with the private and public sectors enables us at MDU to help people feel better and the earth to last longer. Mälardalen University is located on both sides of Lake Mälaren with campuses in Eskilstuna and Västerås.

Automated Test Generation

This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.

Deep Learning for Industrial Imaging

This course will teach you how to build convolutional neural networks. You will learn to design intelligent systems using deep learning for classification, annotation, and object recognition.

Digital Twins in Virtual Production

Learn about digital twins and how they can be used in smart production! A digital twin is used to create a virtual model of a real production system. Among other things, it can be used to simulate how the product will be manufactured, how materials flow and how machines move. The course gives you knowledge of industrial digital twins and their application within the framework of smart production. The course is given with flexible start and study pace, but we recommend a study pace of 20%, which means that the course takes about 8 calendar weeks.

Extended reality (XR) in virtual production

In this course you will learn how to design production systems using XR. By visualizing production processes using various XR technologies, you will gain an understanding of when each technology is best suited and how it can be implemented.

Fail-safe Design Concepts

Today, many industries face an increase in the design of dependable systems, often with a multitude of challenges including more complex electronics and intensive software. At the same time, most of the engineers graduating from universities do not have skills in designing fault tolerant systems.  This online course aims to give engineers and students a toolbox of fail-safe design concepts, addressing both hardware and software techniques, such that they can understand the rationales for suitable mitigation strategies.

Fundamentals of Industrial Cybersecurity

In this course, you will be made aware of the state-of-the-art in cybersecurity research and state of practice in industry. Cybersecurity vulnerabilities are a threat to progress in the business sector and society. This is an accelerating threat due to the current rapid digitalisation, which in manufacturing is termed Industry 4.0. Companies are aware of this threat and realise the need to invest in countermeasures, but development is hampered by lack of competence.  

Industrialization of New Products and Production Technologies

The course provides a basic understanding of how the product interacts with industrial processes and how this can made more efficient. You will also learn how to use time-to-volume with high quality as a strategy to achieve high productivity and low cost. The course gives you the tools and methods for managing industrialization challenges. By using these, you can ensure fast and cost-effective industrialization. The course also provides an overview of how you can reduce the risk of failure with your industrialization.

Machine Learning With Big Data

The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.

Methods and Tools for Industrial Cybersecurity

The course has the objective to provide proficiency in cybersecurity analysis and design in industrial settings, with a special focus on smart factories and Industry 4.0. To that aim, you will learn about advanced cybersecurity concepts, methodologies and tools. You will also be able to apply your knowledge to case-studies of industrial relevance.

Model-based development: Theory and practice (MBD-TP)

The aim of this course is to provide participants with the principles behind model-driven development of software systems and the application of such a methodology in practice. Modelling is an effective solution to reduce problem complexity and, as a consequence, to enhance time-to-market and properties of the final product.

Predictive Data Analytics

The course will give insights in fundamental concepts of machine learning and actionable forecasting using predictive analytics. It will cover the key concepts to extract useful information and knowledge from big data sets for analytical modeling

Quality assurance - Catching bugs by formal verification

The aim of the course is to introduce the participants into methods and tools for verifying systems that need to react to external stimuli. The methods use system models with precise formal semantics and will span model-checking as well as deductive verification. A set of simple examples as well as real-world applications will be used throughout the course to illustrate the methods and their tool support. The objective of the course is to understand the underpinning theories of formal verification, and learn how to apply tool support in order to verify system models.