COURSE DESCRIPTION
The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you.
What will you learn?
You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society?
Who is the course for?
The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up.
Who are the teachers?
Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.
This course looks at where important materials in products we use every day come from and how these materials can be used more efficiently, longer, and in closed loops. This is the aim of the Circular Economy, but it doesn’t happen on its own. It is the result of choices and strategies by suppliers, designers, businesses, policymakers and all of us as consumers. In addition to providing many cases of managing materials for sustainability, the course also teaches skills and tools for analyzing circular business models and promotes development of your own ideas to become more involved in the transition to a Circular Economy. You will learn from expert researchers and practitioners from around Europe as they explain core elements and challenges in the transition to a circular economy over the course of 5 modules: Module 1: Materials. This module explores where materials come from, and builds a rationale for why society needs more circularity. Module 2: Circular Business Models. In this module circular business models are explored in-depth and a range of ways for business to create economic and social value are discussed. Module 3: Circular Design, Innovation and Assessment. This module presents topics like functional materials and eco-design as well as methods to assess environmental impacts. Module 4: Policies and Networks. This module explores the role of governments and networks and how policies and sharing best practices can enable the circular economy. Module 5: Circular Societies. This module examines new norms, forms of engagement, social systems, and institutions, needed by the circular economy and how we, as individuals, can help society become more circular.
In this course, participants are introduced to key notions and concepts evolving in sustainability science that are relevant to all, independent to one's work or field of interest. After having completed the course, participants will have a better understanding of the vocabulary used today and should demonstrate the ability to reflect critically to integrate different perspectives of environmental, social, and economic sustainability to their specific area of interest or research. Throughout the course, links are made to the Agenda 2030 for Sustainable Development, as our current global road map towards sustainability, and how new approaches and solutions are emerging to describe, understand and address key sustainability challenges. Put simply, the overall aim is to give participants the knowledge and confidence needed to present and discuss ideas with others by applying methods, concepts and the vocabulary exemplified in the course with a more holistic view on the sustainability agenda across topics and disciplines. The course is designed as 5 modules: The first module presents essential concepts within sustainability science, and methods used to describe, frame, and communicate aspects of sustainability. We look at key questions such as what we mean with strong or weak sustainability, resilience, tipping points and the notion of planetary boundaries. We also look at some techniques used of envisioning alternative futures and transitions pathways. The second module is all about systems thinking and how systemic approaches are applied today to achieve long-term sustainability goals. Your will see what we mean with systems thinking and how systems thinking, and design is applied in practice to find new solutions. The third module touches upon drivers for a sustainable future, namely links to economy and business with an introduction to notions of a circular economy, and also policy and regulatory frameworks. We introduce the basics of transformative policy frames and how they are designed and applied through several real-case examples. The fourth module discusses the links between innovation and sustainability, highlighting approaches for technological, social, institutional, and financial innovations. Some examples (or cases) aim to show how different actors across society balance in practice the need for innovative approaches for social, environmental, and economic sustainability. The fifth and last module provides general insights on how we work with models to create various scenarios that help us identify solutions and pathways for a more sustainable world. Three main dimensions are addressed namely climate and climate change, nature and biodiversity, and the importance of data and geodata science to support spatial planning and sustainable land use.
How can we work with nature to design and build our cities? This course explores urban nature and nature-based solutions in cities in Europe and around the world. We connect together the key themes of cities, nature, sustainability and innovation. We discuss how to assess what nature-based solutions can achieve in cities. We examine how innovation is taking place in cities in relation to nature. And we analyse the potential of nature-based solutions to help respond to climate change and sustainability challenges. This course was launched in January 2020, and it was updated in September 2021 with new podcasts, films and publications. The course is produced by Lund University in cooperation with partners from Naturvation – a collaborative project on finding synergies between cities, nature, sustainability and innovation. The course features researchers, practitioners and entrepreneurs from a range organisations.
The course will give insights in fundamental concepts of machine learning and actionable forecasting using predictive analytics. It will cover the key concepts to extract useful information and knowledge from big data sets for analytical modeling
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
This course will teach you how to build convolutional neural networks. You will learn to design intelligent systems using deep learning for classification, annotation, and object recognition.