Applications 2023-09-01 - 2023-10-13
COURSE DESCRIPTION
Applied robotics deals with industrial robots and their use in industry. Different kinds of robots are simulated and presented in the course, namely, mobile robots, logistic robots, collaborative robots and additive manufacturing robots.
The course covers the structure and properties of robots, as well as principles for use in industry based on different principles. The course introduces Industry 5.0, which is a human-centered vision of industry that complements the existing Industry 4.0 approach.
Based on the requirements placed on a robot system, these can be configured based on different technical starting points, how they should be used and methods to create efficiency. Commonly occurring equipment is taken up as adaptations to different work processes and applications. This is where grippers and sensors come in, as well as process equipment of various kinds.
The course covers factors for investment, as well as labs on how programming can be handled.
Target group
This course is for professionals who work with production systems, automation and robotization at various levels as responsible for individual production lines, departments, or role as production manager or production development. The course will mainly focus on the manufacturing industry in application examples, but the principles covered will be applicable to a number of industries including consulting companies working towards the manufacturing industry.
Content
The course includes the following:
Structure and characteristics of industrial robots in automation
Guide and factors when investing in robot systems
Labs in programming with industrial robots
Development trends – a global perspective
Practical information
The majority of the parts of the course will take place on Campus (Växjö), and remotely.
During the course, participants will be asked to contribute an automation-based study case from the companies where they are active. Study cases are reported during the course. These, together with performed laboratories, constitute the examination of the course. We will as far as possible be flexible with times for the various course elements.
Teaching language: Swedish. Literature and certain elements may be in English.
The course is free of charge and gives 3 higher education credits, which normally includes approx. 80 hours of work.
Course material will be distributed in connection with the course.
Entry requirements
Basic qualification at advanced level in mechanical engineering or equivalent.
Candidates with relevant work experience are also welcome to apply. Two years of relevant work experience is considered equivalent to one year of university studies at bachelor's level. We can validate your competence if necessary.
Registration:
Registration can be done continuously until the start of the course.
Explore the different tools and software to design, test, and prototype custom robot parts and robust robot behaviour. In recent years, industries around the world have been getting creative when it comes to incorporating robotics into their workflows. This three-week course offers a fascinating introduction to software and tools currently used in robotics. You’ll build basic knowledge of robotics tools and learn how they can be adapted for different industries. Familiarise yourself with Ubuntu operating system and Gazebo framework Gain hands-on experience using 3D robotics models in simulation Learn from the experts at the cutting edge of control engineering, robotics, and AI This course is designed for anyone interested in using robotic solutions in their role and who wants to learn the basics of robotics frameworks. The course will be given in English.
Gain essential practical skills in the application of robotics to understand how to use robotic tools across various industries. On this two-week course you’ll develop a working knowledge of the use of robotics, gaining essential practical skills for robotic applications. Delving into the fundamentals of robotics, you’ll be equipped with the basics of 3D modelling, object detection, computer vision, and image processing. You’ll discover examples and get hands-on experience in developing engaging and useful robotics applications. The skills you gain in this course will help you understand how to develop robotic tools in application across various sectors. Delve into object detection Gain practical skills in the application of robotics Learn from the experts at Luleå University of Technology This course is designed for anyone interested in learning how to develop robotic tools. It will be most beneficial for those who have some theoretical knowledge of robotics and want to gain more hands-on experience. This course will be given in English.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. Following are suggested modules in the virtual commissioning course, each with its own specific role in the process. These modules work together to create a comprehensive virtual commissioning process, allowing engineers to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Pre-requisite 75 university credits in production technology, mechanical engineering, product and process development, computer technology and/or computer science or equivalent or 40 credits in technology and at least 2 years of full-time professional experience from a relevant area within industry. In addition, English A/English 6 are required. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration Students Master's/PhD degree students who are involved in energy, digitalization, controls and production fields. Scehduled online seminars: None The number of participants in the course is limited, so please hurry with your application!
The Internet of Things (IoT) is a networking paradigm which enables different devices (from thermostats to autonomous vehicles) to collect valuable information and exchange it with other devices using different communications protocols over the Internet. This technology allows to analyse and correlate heterogeneous sources of information, extract valuable insights, and enable better decision processes. Although the IoT has the potential to revolutionise a variety of industries, such as healthcare, agriculture, transportation, and manufacturing, IoT devices also introduce new cybersecurity risks and challenges. In this course, the students will obtain an in-depth understanding of the Internet of Things (IoT) and the associated cybersecurity challenges. The course covers the fundamentals of IoT and its applications, the communication protocols used in IoT systems, the cybersecurity threats to IoT, and the countermeasures that can be deployed. The course is split in four main modules, described as follows: Understand and illustrate the basic concepts of the IoT paradigm and its applications Discern benefits and drawback of the most common IoT communication protocols Identify the cybersecurity threats associated with IoT systems Know and select the appropriate cybersecurity countermeasures Course Plan Module 1: Introduction to IoT Definition and characteristics of IoT IoT architecture and components Applications of IoT Module 2: Communication Protocols for IoT Overview of communication protocols used in IoT MQTT, CoAP, and HTTP protocols Advantages and disadvantages of each protocol Module 3: Security Threats to IoT Overview of cybersecurity threats associated with IoT Understanding the risks associated with IoT Malware, DDoS, and phishing attacks Specific vulnerabilities in IoT devices and networks Module 4: Securing IoT Devices and Networks Overview of security measures for IoT systems Network segmentation, access control, and encryption Best practices for securing IoT devices and networks Organisation and Examination Credits and time table: 3 ECTS distributed over 10 weeks Scehduled online seminars: December 4th 2023, January 12th 2024 and February 9th 2024 Examination, one of the following: Analysis and presentation of relevant manuscripts in the literature Bring your own problem (BYOP) and solution. For example, analyse the cybersecurity of the IoT network of your company and propose improvements The number of participants in the course is limited, so please hurry with your application!
Your abilities in development work gain more and more importance in professional life. This course gives you the opportunity to develop knowledge and skills in product, production and business development as well as the relationship between these. You are introduced to systematic working methods for product, production and business development with a focus on innovation and creativity in practical contexts. The overall aim of the course is an in-depth understanding of the application of various processes for development work of various kinds. The goal is that the students increase their ability to understand and apply development processes and increase their insight into how the processes relate to organizations’ innovation and business strategies to obtain circular flows, resilience and sustainability in the manufacturing industry. The teaching consists of self-study of course literature, films and other material via an internet-based course platform, scheduled webinars and written reflections. No physical gatherings. Scehduled online seminars: December 4th 2023, January 8th 2024, January 22nd 2024 and February 5th 2024 The number of participants in the course is limited, so please hurry with your application!
This course provides a glimpse into the world of batteries. We all use batteries every day, but do you really know how a battery works, what’s inside it, what it’s useful for, and how scientists are trying to improve them for the future? In this introductory course, we will tell you everything from battery basics, through the development of the lithium-ion battery, their applications and requirements, what kinds of materials are used to build batteries, to what happens to a battery when it’s finished its life and how batteries are being developed for the future. As a participant in this course, you ideally have some form of technical background, probably studied sciences at college or even in higher education, or have experience in a technical profession. It is hoped that after the course you will be much more aware of the battery world, the requirements, applications and components of a battery, as well as having a wider perspective of how this important technology will develop over the coming decade. It is expected that this course should take about 10-15 hours in total to complete. The course will be available from 30th of December 2022.