Our 20,000 students read courses and study programmes in Business, Health, Engineering and Education. We conduct research within all areas of education and have internationally outstanding research in future energy and embedded systems. Our close cooperation with the private and public sectors enables us at MDU to help people feel better and the earth to last longer. Mälardalen University is located on both sides of Lake Mälaren with campuses in Eskilstuna and Västerås.
20 RESULTS
SHOW
SORT BY:
The information and communication technology (ICT) sector is responsible for approx. 1.8-2.8% of the global greenhouse gas (GHG) emissions in 2020, and software is both part of the problems and the solutions. Traditional software engineering principles and techniques do not consider the climate, environment, and sustainability aspects in building and using software for any purpose. We, software engineers, developers, researchers, climate scientists, and various other related stakeholders, need to think about how we can reduce the carbon footprint due to building and using software-intensive systems. Green and sustainable software engineering is an emerging concept that can help reduce the carbon footprint related to software. In this introductory course, we will introduce the concept of green and sustainable software engineering and the engineering process to build green and sustainable software. Topics Sustainable and green computing Sustainable and green software engineering Process Energy efficient computing Sustainability issues in Scientific computing You will learnBy the end of the course, you will be able to: analyze the green and sustainability issues in traditional software engineering, identify and incorporate key elements to be included in the software engineering process to make the software green and sustainable, and use techniques to make your software code energy efficient. Who is the course for?This course is designed for those who are software developers, managers and software related policy makers, or have knowledge about software development, and want to consider the green and sustainability aspects in their everyday life. Also, this course will be useful for computational scientists who build green software and want to know more about these aspects in software engineering. However, this is an introductory course, and it will show a path for life-long learning to build more in-depth knowledge in each concept introduced in this course.
Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you. You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English. The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University: Internet of things for industrial applications, 5 credits Simulation of production system, 5 credits Big data for industrial applications, 5 credits
Klimatpsykologin ger kunskap om de mänskliga reaktionerna på klimatkrisen och arbetssätt för att få med sig fler, skapa engagemang och hållbar förändring. Kursen ger dig verktyg både i att identifiera vilken typ av beteendeförändring som ger stor effekt på hållbarhetsarbetet och hur denna beteendeförändring på effektivast sätt kan uppnås. Efter kursen kommer du att kunna gå från ord till handling och från pappersprodukter till verklig förändring. Innehåll • Inlärningspsykologi • Prioritera beteenden och strategier • Förändring i organisationer: • Samskapande, samarbete och involvering • Implementering Du kommer få kunskap om Kursen ger dig verktyg både i att identifiera vilken typ av beteendeförändring som ger stor effekt på hållbarhetsarbetet och hur denna beteendeförändring på effektivast sätt kan uppnås. Efter kursen kommer du kunna arbeta målinriktat i ditt hållbarhetsarbete, identifiera nyckelbeteenden för förändring, analysera och prioritera beteenden som blir centrala för ökad påverkanskraft. Du kommer kunna använda kunskap om klimatpsykologi för att välja rätt projekt och göra rätt saker. Vem vänder sig kursen till? Kursen vänder sig till dig som jobbar med hållbarhet på olika sätt i din yrkesutövning och som vill vässa din förmåga att få bättre genomslag för hållbarhetsarbetet. Du kan till exempel vara hållbarhetschef, hållbarhetssamordnare, processledare, klimatstrateg eller miljöpedagog, men kursen lämpar sig för alla som vill eller ska driva organisationens miljö- och/ eller klimatarbete. Kursupplägg Kursen är en öppen kurs som ges online med förinspelat material och den kan genomföras i egen takt. Språk Svenska
The aim of the course is to provide proficiency in cybersecurity analysis and design in industrial settings, with a special focus on smart factories and Industry 4.0. To achieve this, you will learn about advanced cybersecurity concepts, methodologies and tools. You will also be able to apply your knowledge to industrial case studies.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.
AI systems are increasingly being integrated into various industrial processes, including manufacturing, logistics, and autonomous vehicles. Trustworthy AI ensures that these systems operate reliably, reducing the risk of accidents or costly errors. Trustworthy AI helps companies comply with ethical standards and legal regulations. It ensures that AI systems do not discriminate against certain groups, violate privacy rights, or engage in other unethical behaviors. Trustworthy AI System course can support in the development of more advanced AI technologies, fostering research collaboration, and attracting talent.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration