Search

Production and Logistics

9 RESULTS

Extended reality (XR) in virtual production

In this course you will learn how to design production systems using XR. By visualizing production processes using various XR technologies, you will gain an understanding of when each technology is best suited and how it can be implemented.

Industrialization of New Products and Production Technologies

The course provides a basic understanding of how the product interacts with industrial processes and how this can made more efficient. You will also learn how to use time-to-volume with high quality as a strategy to achieve high productivity and low cost. The course gives you the tools and methods for managing industrialization challenges. By using these, you can ensure fast and cost-effective industrialization. The course also provides an overview of how you can reduce the risk of failure with your industrialization.

Industry 4.0 - Introduction

Would you like to know what Industry 4.0 is about? Then this course is for you! In the course, we look at enabling technologies of Industry 4.0 from a human and industrial perspective. The course covers many topics and you will learn the basic terminology related to Industry 4.0 as well as insight and understanding of the Fourth Industrial Revolution and how it is set to affect industry and individuals.

Introduction to Industry 4.0

Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you. You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English. The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University: Internet of things for industrial applications, 5 credits Simulation of production system, 5 credits Big data for industrial applications, 5 credits

Lean Production

Do you want to be efficient, effective and minimize waste by learning and implementing lean production tools? This course provides insight into the demands and challenges posed by competitive production in industrial production systems and develops your ability to participate in and to drive improvement work. The course focuses on efficient lean production. Through theory and project work, you will learn useful techniques, methods and strategies. You will obtain the necessary knowledge and training to carry out value stream mapping and other forms of improvement work. The course offers current and competitive knowledge through its close links with our successful research and partner companies. It provides basic knowledge and understanding of the modern view of lean production in industrial activity. 

Lean Production - KTH Leancentrum

This course is taught in Swedish. Lean production consists of a set of principles and techniques, which are included in the business's systems and processes. These can be derived into a particular business philosophy and strategy that encompasses the entire organization's operations. The course lays the foundation for continued broader and deeper studies of how operations are run at the new generation of world-leading companies with a Lean business strategy. This starting course covers the following topics: Strategies and principles for Lean production Stable processes and standardized working methods Design of value streams Pulling and pushing production systems Quality philosophy and quality methodology Teamwork, commitment and participation Management system with PDCA methodology Business collaboration along value flows Transformation to a Lean corporate culture Course structure Five two-day meetings consisting of discussion lectures, practical exercises and analyzes of operations in companies that practice Lean methodology. Course literature Jeffrey Liker, The Toyota Way, Liber, 2009 Modig & Åhlström, This is Lean Petersson et al., Lean turns deviations into success, 2009 Target group People within organizations considering and Lean business strategy. See all courses that KTH Leancentrum offers

Simulation to Improve Production Efficiency A1N

Undervisningen ges på svenska. Viss undervisning på engelska kan förekomma. Se Produktionseffektivisering med simulering A1N för mer information.

Smart factories

A smart factory is an industrial manufacturing facility that uses technology such as the Internet of Things (IoT), automation, and artificial intelligence (AI) to increase productivity and profitability. Smart factories use sensors and other technology to collect, share, and analyze data that helps improve production, increase safety, reduce energy consumption, and improve product quality. You will learn The various major technological areas of smart factories Fundamental principles of operation and control of smart factories Understand and describe how smart machines and products interact in smart factories

Virtual Commissioning

Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration