COURSE DESCRIPTION
If you want to learn principles, methods, tools and project strategies for efficient execution of projects in order to gain high quality competence in industrial project management, this course is for you.
The course is suitable for you who work in product development, or with improvements in production, or in an administrative project.
You will develop knowledge and skills about how to enhance your project management capabilities and deliver predetermined project results. During the course you will work with and relate what you learn to project management in your company.
The phases found in projects are covered; establish, execute, hand-over to line organisation and close-out of the project. Organisational aspects of project management are in focus such as leadership, agility, quality management, communication and decision-making.
Fiber-optic sensing technologies are fast evolving and have entered in a large domain of our industry. Today all geothermal fields, water dams, railroads and to some lesser extent mines are equipped with fiber-optic cables to allow not only digital data transmission but also to interrogate fiber cables for information such as temperature changes or values (leakage issues or fractured rocks) but also strain measurements that can be indicators of soil failure or movements. When conducted in a controlled manner, artificial signals can be generated to help image the subsurface for mineral exploration, mine tailing characterization and for geothermal field development work by mapping faults and thermal fluids. There are other applications such as traffic monitoring that can also be done using this technology. Given its vast applications in the green transition, fiber-optic sensing is one of the most advanced technologies to be implemented in a wide range of fossil-free energy systems, hence, of a great importance to learn about their pros and cons and possibilities. Course content The course will have the following content: Introduction to DAS DAS Interrogators for temperature and strain measurements Fiber optic cables and their health conditions (hands-on with fiber-cable microscopes and fusion splicers) Design of a fiber-optic survey (surface and borehole) Parameter testing such as gauge length, laser pulse and width Field trials at a mine tailing test site or a mineral exploration borehole Work with the data and reporting Course design Hybrid and blended including hands-on practices. This course takes about 30 hours of study to complete. You will learn By taking the course the participants are intended to learn about: Fiber-optic cables and their specifications including how to check their health and splice them DAS interrogators and their interior designs for fiber-optic sensing applications Design surface and borehole experiments Read and work with the data (hands-on) Who is the course for? The course will be given to a broad range of participants from engineering to geoscience backgrounds including university students but also participants from the industry. Participants can be from construction industry, road administration, energy sector (e.g., water dams), mining and defence workers. The course will be run within the newly established Smart Exploration Research Center involving tech companies such as BitSimNow Part of Prevas who are also expert in PFGA and fiber-related technologies. A prerequisite to the course is prior knowledge on different problems in the energy sector but some knowledge with Matlab and/or Python programming. The course can continue as an industry offer through the SERC-center as a multidisciplinary course at Uppsala University and for industry participants.
Access to critical minerals and materials crucial to our wealth and well-being must be produced in a sustainable way. This means that the research must deal with metals and minerals that are innovation-critical, necessary for green/smart transition, rare, of insufficient supply or which should not be traded from conflict zones. Various component of the course makes it useful for professionals and hands-on with lectures, assignments, homeworks, fieldcourse and field reports as well as rock physics lab. Topics Sustainable exploration, mining and extraction of critical raw materials Course element: Critical and strategic raw materials Sustainability, SDGs, ESG and social aspects (the value chain) Exploration methods Geological and ore forming context Physical properties Geophysical methods Drilling technologies Extraction and mineral processing methods Rock quality and mining methods Nano-tech solutions Ground water contamination and accessibility Environmental assessments Mine tailing and beneficiation Site visits and hands-on (Epiroc, Blötberget, labs) Course structure The course is a combination of in-person, hybrid and hands-on including field trips. You will learn By the end of the course, you will be able to: analyse what exploration methods are used for what commodities, have good knowledge of the state-of-the-art solutions and incorporate your learning in todays industry practices. Who is the course for? This course is designed for those who are geologists, engineers or work with sustainability to learn how critical raw materials are explored, mined and turn to metals. It is open to both university students but also industry participants from relevant sectors. How much time do I need for the course? The course will run from 25 August - 5 December 2025 and will in sum require 100 hrs of commitments. Check the SERC center for more updates: www.smartexploration.se
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se
Hydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. Study hoursHydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. SeminarsSeminar lab: December 10th 2025 at 16:00-18:00 Seminar assignments: January 14th 2026 at 16:00-18:00 Entry reqirements180 credits in science/technology, including a basic course in chemistry of 7.5 credits (e.g. Chemical Principles, K0016K). Good knowledge of English, equivalent to English 6 or equivalent real competence gained through practical experience. Target groupProfessionals in industry, academia or institute, everyone that fulfills the criteria is welcome but the course is created for further education.
This course addresses the urgent need to transition metallurgical industries towards sustainable, carbon-free practices. Designed for industrial professionals and researchers, it provides comprehensive understanding of both environmental impacts and cutting-edge technological solutions transforming metal production. The curriculum begins with the context and imperative for sustainable metallurgy within global climate frameworks. You will explore alternative reduction technologies, studying hydrogen-based processes, electrolysis, and innovative techniques while evaluating your technical feasibility and real-world applications. The course examines sustainable energy integration challenges, focusing on renewable sources, storage technologies, and grid strategies essential for industrial implementation. Special attention is given to hydrogen's revolutionary role in metallurgy, covering production methods, applications in metal processing, safety considerations, and infrastructure requirements. Through a culminating entrepreneurial project, you will develop innovative solutions by forming interdisciplinary teams to address specific challenges, creating business plans and presentations while maintaining reflective learning journals. This transformative educational experience builds both theoretical knowledge and practical skills, enabling you to become an effective change agent driving the decarbonization of metallurgical processes—an essential step toward industry's sustainable future. Course content Mapping Emissions in Metallurgical Systems Low-Carbon & CO₂-Free Metallurgy Technologies Integrating Hydrogen & Renewables into Metallurgical Operations Infrastructure, Supply-Chain Logistics & Plant Retrofitting You will learn to Analyze the environmental impact of traditional metallurgical processes and articulate the strategic importance of CO₂-free alternatives within global climate frameworks Evaluate breakthrough hydrogen-based reduction technologies, electrolysis methods, and other innovative approaches for sustainable metal production Develop strategies for integrating renewable energy sources into metallurgical operations, addressing intermittency and storage challenges Apply comprehensive technical and economic assessment methods to evaluate the feasibility of implementing carbon-neutral solutions in industrial settings Design transformation roadmaps for existing metallurgical facilities transitioning to low-carbon production methods Lead change initiatives within organizations by applying entrepreneurial thinking to overcome technological, economic, and social barriers to sustainable metallurgy Target group The course is designed for professionals at the intersection of metallurgy and sustainability who are driving industrial transformation towards carbon neutrality. It's ideal for Industrial PhD students and researchers exploring sustainable metallurgical processes Process engineers and technical managers in metal production facilities Sustainability and environmental compliance specialists in metallurgical industries R&D professionals developing next-generation metal production technologies Industrial strategists planning long-term decarbonization pathways Technology developers and entrepreneurs working on clean-tech solutions for metals production The course will start in the autumn 2025. Dates will be published in August.
Production development that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. The aim of the course is to give the student a deeper understanding of production development for circular flows. Through this course, you will explore the critical relationship between sustainable practices and production development strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for production development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various practices in different types of product development work. The objective is for course participants to enhance their ability to understand and apply production development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours40 hours distributed from week 41, 2025 to week 47, 2025. SeminarsWebinar 1: October, 6thWebinar 2: week 43Webinar 3: week 45Webinar 4: November, 18th Target groupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry reqirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThis course Production development for circular flowis part of an educational package in circular ecconomy. The other courses are Product/production and business development for circular flows (starting spring 2026), Business development for circular flows (starting spring 2026), Product development for circular flows (starting August 28th 2025).