COURSE DESCRIPTION
This course is a collaboration between Uppsala University and the United Nations Development Programme.
The course aims to strengthen participants' capacity to contribute actively to the fulfilment of the UN Sustainable Development Goals, the SDGs, in a complex, ever changing, global society. It will do so by clarifying the context of the SDGs in the international community, and by addressing the needed solutions from a both human and technical approach.
The course consists of three modules:
Module 1 will provide you with a wider background context to the SDGs and the aim is that following this module you will have gained insight into how humanity is being brought together. You will have received a basic understanding of the framework of the rules-based world order, within which the SDGs are set, how they link to this framework, as well as on how progress is maintained.
Module 2 will provide you with collaborative learning tools and methods of co-creation. It will provide insights on why change fails and suggest planning tools and resources to enable transition from the current state to the desired state. It will show how you can apply some of these tools to foster collaborative innovations addressing sustainability challenges.
Module 3 will provide you with current-day insights into the United Nations Development Programme, the UN body that manages and follows up the progress of the SDGs. You will be introduced to practical tools used by the organization to promote SDG fulfilment, the UNDP 7-step methodology, exemplified by a special focus on e-mobility.
This online course is stand-alone and completly self paced, but it is also given as an advanced level as a five week course awarding university credits. The online course will take you about 25 h to complete.
The course has been created for those of you who are seeking a more in-depth understanding of the background and international context of the Sustainable Development Goals. It is for those of you who want to work hands-on with sustainable development, to strengthen this capacity, and are interested in both the human and technical side of delivering solutions. Suppose you are interested in the climate agenda and the power of collaboration, as well as curious to learn more about electrification in transportation systems. In that case, this is a course for you.
In this course, participants are introduced to key notions and concepts evolving in sustainability science that are relevant to all, independent to one's work or field of interest. After having completed the course, participants will have a better understanding of the vocabulary used today and should demonstrate the ability to reflect critically to integrate different perspectives of environmental, social, and economic sustainability to their specific area of interest or research. Throughout the course, links are made to the Agenda 2030 for Sustainable Development, as our current global road map towards sustainability, and how new approaches and solutions are emerging to describe, understand and address key sustainability challenges. Put simply, the overall aim is to give participants the knowledge and confidence needed to present and discuss ideas with others by applying methods, concepts and the vocabulary exemplified in the course with a more holistic view on the sustainability agenda across topics and disciplines. The course is designed as 5 modules: The first module presents essential concepts within sustainability science, and methods used to describe, frame, and communicate aspects of sustainability. We look at key questions such as what we mean with strong or weak sustainability, resilience, tipping points and the notion of planetary boundaries. We also look at some techniques used of envisioning alternative futures and transitions pathways. The second module is all about systems thinking and how systemic approaches are applied today to achieve long-term sustainability goals. Your will see what we mean with systems thinking and how systems thinking, and design is applied in practice to find new solutions. The third module touches upon drivers for a sustainable future, namely links to economy and business with an introduction to notions of a circular economy, and also policy and regulatory frameworks. We introduce the basics of transformative policy frames and how they are designed and applied through several real-case examples. The fourth module discusses the links between innovation and sustainability, highlighting approaches for technological, social, institutional, and financial innovations. Some examples (or cases) aim to show how different actors across society balance in practice the need for innovative approaches for social, environmental, and economic sustainability. The fifth and last module provides general insights on how we work with models to create various scenarios that help us identify solutions and pathways for a more sustainable world. Three main dimensions are addressed namely climate and climate change, nature and biodiversity, and the importance of data and geodata science to support spatial planning and sustainable land use.
This course is taught in Swedish. Expand your Lean toolbox with a "Green Kaizen" tool that works! We now have less than seven years to meet the 1.5 degree target based on the CO2 budget calculated by the IPCC (UN Intergovernmental Panel on Climate Change). New technologies and new environmental investments are an important part of the societal transformation needed, but equally important is changing the way we work and behave in our daily lives and workplaces to reduce our environmental impact. In this course you will get training on an environmental improvement tool that has been successfully tested in a number of companies. The tool engages co-workers and teams to reduce the environmental impact in their own workplace and also helps to accelerate the pace of improvement. The course has four main themes: Identifying waste to avoid risk of harm to people and the environment Using improvement methodology for environmental and resource efficiency improvements Analysing and developing sustainable processes Working with visions and goals for long-term sustainable development Waste is anything that is not necessary of energy, raw materials, equipment, components, land, space and working time, to meet the customer's needs. With "green Lean glasses", the risks of harm to people and the environment are the most unnecessary and in the long run the most expensive wastes, not least for the climate. Lean & Green is a refresher course in green lean tools for those who want to build and develop a sustainable organisation. We use the Green Performance Map, an improvement tool for environmental and resource efficiency that also helps to identify opportunities for a more circular economy. Course objectives After completing the course you should be able to: Use the Green Performance Map tool to identify environmental failures and engage the whole staff in the improvement process Understand how the approach could be implemented in your organisation Integrate environmental improvement work into daily lean work Course outline The course consists of 4 digital half days plus homework. These include lectures, group discussions and practical exercises, including sustainability analysis of a process within your own organisation. You will be given a homework assignment between the course days in order to deepen your knowledge of Lean & Green. The assignment is based on your own and your organisation's work with sustainable development. The course is conducted by KTH Leancentrum in Södertälje. The lecturers are researchers and practitioners from KTH and RISE IVF. Among other things, you will learn: Seeing "green" as part of lean Identifying environmental failures in the workplace Using the "Green Performance Map" tool Target group Supervisors, production managers, environmental managers and lean coordinators. See all courses that KTH Leancentrum offers
Improve work environments using RAMP (Risk management Assessment tool for Manual handling Proactively)! In this course, you will get an overview of the entire RAMP tool and learn to identify and assess musculoskeletal disorder (MSD) risks using the RAMP tool’s first module, RAMP I. MSDs are one of the most common reasons for absence from work today. It leads to reduced productivity and quality losses at companies, as well as increased medical costs. This course is part one of a RAMP program. The other courses are Risk Management of Work-Related Injuries using RAMP II and Proficiency in using RAMP for Risk Management of Work-Related Injuries.
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Digital seminars The course includes five scheduled digital seminars. The seminars will be recorded to provide flexibility in completing the course, although we highly recommend to participate in the seminars if possible. November 4, 9:15 - 12:00 November 11, 9:15 - 12:00 November 25, 9:15 - 12:00 December 2, 9:15 - 12:00 December 16, 9:15 - 12:00 Study effort: 80 hrs