Applications 2024-12-08
COURSE DESCRIPTION
Deep Learning is one of the most prominent techniques in AI, with the potential to solve complex problems across various domains. This course provides a fundamental introduction to Deep Learning and its applications, with a focus on sustainable solutions.
Topics
You will learn
Understand the principles behind Deep Learning
Implement basic Deep Learning algorithms
Explore applications for sustainable solutions
Who is the course for?
This course is designed for data scientists, engineers, and AI practitioners who want to learn the basics of Deep Learning and its applications in solving real-world problems. It is also ideal for professionals looking to implement AI solutions with a focus on sustainability.
Language
The course is conducted in English.
Additional information
The course includes 15 hours of study and is offered for a fee.
This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
The course aims to give insights in fundamental concepts of machine learning for predictive analytics to provide actionable, i.e., better and more informed decisions in, forecasting. It covers the key concepts to extract useful information and knowledge from data sets to construct predictive modeling. The course includes three modules: Introduction: overview of Predictive data analytics and Machine learning for predictive analytics. Data exploration and visualization: presents case studies from industrial application domains and discusses key technical issues related to how we can gain insights enabling to see trends and patterns in industrial data. Predictive modeling: consists of issues in construction of predictive modeling, i.e., model data and determine Machine learning algorithms for predicative analytics and techniques for model evaluation.
Fiber-optic sensing technologies are fast evolving and have entered in a large domain of our industry. Today all geothermal fields, water dams, railroads and to some lesser extent mines are equipped with fiber-optic cables to allow not only digital data transmission but also to interrogate fiber cables for information such as temperature changes or values (leakage issues or fractured rocks) but also strain measurements that can be indicators of soil failure or movements. When conducted in a controlled manner, artificial signals can be generated to help image the subsurface for mineral exploration, mine tailing characterization and for geothermal field development work by mapping faults and thermal fluids. There are other applications such as traffic monitoring that can also be done using this technology. Given its vast applications in the green transition, fiber-optic sensing is one of the most advanced technologies to be implemented in a wide range of fossil-free energy systems, hence, of a great importance to learn about their pros and cons and possibilities. Course content The course will have the following content: Introduction to DAS DAS Interrogators for temperature and strain measurements Fiber optic cables and their health conditions (hands-on with fiber-cable microscopes and fusion splicers) Design of a fiber-optic survey (surface and borehole) Parameter testing such as gauge length, laser pulse and width Field trials at a mine tailing test site or a mineral exploration borehole Work with the data and reporting Course design Hybrid and blended including hands-on practices. This course takes about 30 hours of study to complete. You will learn By taking the course the participants are intended to learn about: Fiber-optic cables and their specifications including how to check their health and splice them DAS interrogators and their interior designs for fiber-optic sensing applications Design surface and borehole experiments Read and work with the data (hands-on) Who is the course for? The course will be given to a broad range of participants from engineering to geoscience backgrounds including university students but also participants from the industry. Participants can be from construction industry, road administration, energy sector (e.g., water dams), mining and defence workers. The course will be run within the newly established Smart Exploration Research Center involving tech companies such as BitSimNow Part of Prevas who are also expert in PFGA and fiber-related technologies. A prerequisite to the course is prior knowledge on different problems in the energy sector but some knowledge with Matlab and/or Python programming. The course can continue as an industry offer through the SERC-center as a multidisciplinary course at Uppsala University and for industry participants.
Access to critical minerals and materials crucial to our wealth and well-being must be produced in a sustainable way. This means that the research must deal with metals and minerals that are innovation-critical, necessary for green/smart transition, rare, of insufficient supply or which should not be traded from conflict zones. Various component of the course makes it useful for professionals and hands-on with lectures, assignments, homeworks, fieldcourse and field reports as well as rock physics lab. Topics Sustainable exploration, mining and extraction of critical raw materials Course element: Critical and strategic raw materials Sustainability, SDGs, ESG and social aspects (the value chain) Exploration methods Geological and ore forming context Physical properties Geophysical methods Drilling technologies Extraction and mineral processing methods Rock quality and mining methods Nano-tech solutions Ground water contamination and accessibility Environmental assessments Mine tailing and beneficiation Site visits and hands-on (Epiroc, Blötberget, labs) Course structure The course is a combination of in-person, hybrid and hands-on including field trips. You will learn By the end of the course, you will be able to: analyse what exploration methods are used for what commodities, have good knowledge of the state-of-the-art solutions and incorporate your learning in todays industry practices. Who is the course for? This course is designed for those who are geologists, engineers or work with sustainability to learn how critical raw materials are explored, mined and turn to metals. It is open to both university students but also industry participants from relevant sectors. How much time do I need for the course? The course will run from 25 August - 5 December 2025 and will in sum require 100 hrs of commitments. Check the SERC center for more updates: www.smartexploration.se
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se