COURSE DESCRIPTION
Vill du vara med och forma framtidens hållbara kommuner? Söker du mer kunskap för att driva ett integrerat hållbarhetsarbete inom den kommunala sektorn? Den här kursen ger dig både teoretiska insikter och praktiska tips för att förstå och implementera hållbarhetsstrategier i den kommunala sektorn.
Kursen ges under en flexibel period där du kan ta del av materialet i din egen takt.
Kursen syftar till att bidra med förståelse för hur hållbarhetsarbete kan integreras i kommunala organisationer och processer. Du kommer att lära dig mer om både interna och externa faktorer som påverkar hållbarhetsarbetet, och hur kommunala organisationer kan balansera intern hållbarhetsstyrning med extern styrning genom samverkan med andra aktörer, i syfte att påverka omställningen till ett mer hållbart samhälle. Genom att fokusera på både de interna och externa förutsättningarna för hållbarhetsstyrning, bidrar kursen med perspektiv och kunskap kring kommunens roll för hållbar utveckling utifrån ett mer holistiskt perspektiv.
Kursen ges helt på distans och består av förinspelade föreläsningar som du kan ta del av när det passar dig, resurstillfällen i realtid, seminarier samt skriftliga uppgifter. Seminarierna uppmuntrar till erfarenhetsutbyte mellan kursdeltagarna. Varje seminarium följs av en individuell reflektion. Kursen avslutas med en självständig individuell analys där du kopplar kursens innehåll till din egen kommunala verksamhet. Detta arbete redovisas både skriftligt och muntligt vid kursens avslutning.
Efter avslutad kurs kommer du att ha utvecklat färdigheter och kunskaper som direkt kan tillämpas i din yrkesroll eller i den organisation du verkar i.
Kursen riktar sig till dig som arbetar i en ledande position, i ett hållbarhetsteam eller är nyfiken på hur kommuner kan bidra till hållbar samhällsutveckling. Ta chansen att utveckla din kompetens för att bidra till ett integrerat hållbarhetsarbete i kommuner!
När du ansöker till kursen måste du visa att du har grundläggande behörighet. Om dina gymnasiebetyg inte redan finns på antagning.se, behöver du ladda upp din gymnasieexamen eller motsvarande där när du ansöker. På kursens sida på liu.se kan du se vilka behörighetskrav som gäller för kursen.
How can we work with nature to design and build our cities? This course explores urban nature and nature-based solutions in cities in Europe and around the world. We connect together the key themes of cities, nature, sustainability and innovation. We discuss how to assess what nature-based solutions can achieve in cities. We examine how innovation is taking place in cities in relation to nature. And we analyse the potential of nature-based solutions to help respond to climate change and sustainability challenges. This course was launched in January 2020, and it was updated in September 2021 with new podcasts, films and publications. The course is produced by Lund University in cooperation with partners from Naturvation – a collaborative project on finding synergies between cities, nature, sustainability and innovation. The course features researchers, practitioners and entrepreneurs from a range organisations.
How can we shape our urban development towards sustainable and prosperous futures? This course explores sustainable cities as engines for greening the economy in Europe and around the world. We place cities in the context of sustainable urban transformation and climate change. We connect the key trends of urbanization, decarbonisation and sustainability. We examine how visions, experiments and innovations can transform urban areas. And we look at practices (what is happening in cities at present) and opportunities (what are the possibilities for cities going forwards into the future). This course was launched in January 2016, and it was updated in September 2021 with new podcasts, films and publications. The course is produced by Lund University in cooperation with WWF and ICLEI – Local Governments for Sustainability who work with creating sustainable cities. The course features researchers, practitioners and entrepreneurs from a range organisations.
How can we govern consumption and the sharing economy in our cities? This course explores cities, consumption and the sharing economy in Europe and around the world. We connect together the key themes of the sharing economy, cities, governance, consumption and urban sustainability. We explore how the sharing economy can contribute to increasing social, environmental and economic sustainability. And we argue that it is imperative that the sharing economy is shaped and designed to advance urban sustainability. This course was launched in May 2020, and it was updated in September 2021 with new podcasts, films and publications. This course is produced by Lund University in cooperation with partners from Sharing Cities Sweden – a national program for the sharing economy in cities with a focus on governance and sustainability. It features researchers, practitioners and entrepreneurs from a range organisations.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Study effort: 80 hrs
This course addresses the urgent need to transition metallurgical industries towards sustainable, carbon-free practices. Designed for industrial professionals and researchers, it provides comprehensive understanding of both environmental impacts and cutting-edge technological solutions transforming metal production. The curriculum begins with the context and imperative for sustainable metallurgy within global climate frameworks. You will explore alternative reduction technologies, studying hydrogen-based processes, electrolysis, and innovative techniques while evaluating your technical feasibility and real-world applications. The course examines sustainable energy integration challenges, focusing on renewable sources, storage technologies, and grid strategies essential for industrial implementation. Special attention is given to hydrogen's revolutionary role in metallurgy, covering production methods, applications in metal processing, safety considerations, and infrastructure requirements. Through a culminating entrepreneurial project, you will develop innovative solutions by forming interdisciplinary teams to address specific challenges, creating business plans and presentations while maintaining reflective learning journals. This transformative educational experience builds both theoretical knowledge and practical skills, enabling you to become an effective change agent driving the decarbonization of metallurgical processes—an essential step toward industry's sustainable future. Course content Mapping Emissions in Metallurgical Systems Low-Carbon & CO₂-Free Metallurgy Technologies Integrating Hydrogen & Renewables into Metallurgical Operations Infrastructure, Supply-Chain Logistics & Plant Retrofitting You will learn to Analyze the environmental impact of traditional metallurgical processes and articulate the strategic importance of CO₂-free alternatives within global climate frameworks Evaluate breakthrough hydrogen-based reduction technologies, electrolysis methods, and other innovative approaches for sustainable metal production Develop strategies for integrating renewable energy sources into metallurgical operations, addressing intermittency and storage challenges Apply comprehensive technical and economic assessment methods to evaluate the feasibility of implementing carbon-neutral solutions in industrial settings Design transformation roadmaps for existing metallurgical facilities transitioning to low-carbon production methods Lead change initiatives within organizations by applying entrepreneurial thinking to overcome technological, economic, and social barriers to sustainable metallurgy Target group The course is designed for professionals at the intersection of metallurgy and sustainability who are driving industrial transformation towards carbon neutrality. It's ideal for Industrial PhD students and researchers exploring sustainable metallurgical processes Process engineers and technical managers in metal production facilities Sustainability and environmental compliance specialists in metallurgical industries R&D professionals developing next-generation metal production technologies Industrial strategists planning long-term decarbonization pathways Technology developers and entrepreneurs working on clean-tech solutions for metals production