Applications 2025-06-04 - 2025-09-30
COURSE DESCRIPTION
This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges.
The students bring their own case study example as the background for a practical project, through which the student is also finally examined.
Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
Online meetings (estimated):
14 Oct.: Introduction
11 Nov.: Project Idea
16 Dec.: Project Presentation
Study hours: 80
This course is given by Örebro University.
This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
The aim of this course is to provide participants with the principles behind model-driven development of software systems and the application of such a methodology in practice. Modelling is an effective solution to reduce problem complexity and, as a consequence, to enhance time-to-market and properties of the final product.
In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.
This course makes you acquainted with the concept of systems-of-systems (SoS), which means that independent systems are collaborating. It gives you an understanding why SoS is an important topic in the current digitalisation and provides a theoretical and practical foundation for understanding important characteristics of SoS. It also gives you a deeper knowledge in a number of key concerns that need to be considered when engineering SoS. This is a course with a flexible start: If you are admitted, you may join the course any time between the course start in September 2025 until the beginning of October. With the recommended study pace of 25%, the course will take approximately seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than the end of the autumn semester.