COURSE DESCRIPTION
Hydrogen will play a major role in the transition to a low-carbon society. Still, it also introduces demanding conditions for materials and components across the entire value chain, from production and compression to storage, transport, and end-use. Many of the most critical technical risks in hydrogen systems are materials-related, including loss of ductility and premature fracture, accelerated fatigue, unexpected leakage, seal degradation, corrosion, and performance degradation over time. Understanding these mechanisms is essential for making safe, reliable, and cost-effective engineering decisions.
This course offers a practical, engineering-focused introduction to materials in the hydrogen economy, including catalysts in hydrogen production and materials used in hydrogen storage and transportation, as well as their impact on component lifetime and system safety. You will learn how hydrogen enters materials, how it moves (diffusion and permeation), where it accumulates (trapping sites), and how these processes can trigger degradation. A special focus is placed on hydrogen embrittlement in metals, particularly in steels and welded joints, because these materials are widely used in pipelines, pressure vessels, fittings, and structural components. The course also covers non-metallic materials that are crucial for hydrogen infrastructure, including polymers, elastomers, and coatings used in liners, seals, hoses, gaskets, and protective layers.
In addition to the fundamental mechanisms, the course connects theory to real engineering choices. You will discuss which materials are suitable under different hydrogen conditions (pressure, temperature, purity, moisture, cycling), what typical failure modes look like, and what mitigation strategies can be used in practice, such as material selection, heat treatment, surface engineering/coatings, design measures, operating-window choices, and inspection/testing approaches. The course also introduces materials challenges in key hydrogen technologies such as electrolysers and storage solutions, highlighting how degradation and compatibility issues influence performance and maintenance needs. You will also discuss hydrogen carriers and their storage and utilization solutions.
The teaching format combines short, focused lectures with seminar discussions and an applied assignment. Participants are encouraged to bring examples from their own work or studies (for example, a pipeline material choice, a valve and seal problem, a storage tank concept, or an electrolyser component, chemical and physical storage systems) and use these as case studies during seminars and in the final assignment. By the end of the course, you will have both the conceptual framework and the practical tools needed to evaluate materials risks in hydrogen applications and make better-informed decisions for real systems.
What you will be able to do after the course
After completing the course, you will be able to:
Explain key mechanisms of hydrogen–materials interactions and their consequences
Identify materials-related risks in hydrogen production, storage, and transportation
Evaluate and justify materials choices for hydrogen components and systems
Propose mitigation strategies (design choices, coatings, operating conditions, testing/inspection approaches)
Course structure (March 2–31)
6 lectures: Overview of hydrogen economy and materials, Materials in hydrogen production, Hydrogen materials interaction-core concepts, mechanisms, and engineering implications, Hydrogen Carriers, and materials selection and design
2 seminars: discussion of case studies and participant problems/components
1 assignment: applied analysis/report linked to a realistic hydrogen application (can be connected to your work/project)
For whom
Engineers and professionals working with hydrogen technologies (or planning hydrogen projects)
Master’s students in relevant fields
Entry requirements
Recommended background in engineering/natural sciences (materials/mechanics/chemistry/physics or equivalent). Relevant professional experience can also qualify.
Examination
Based on:
Assignment (report and/or presentation)
Participation in lectures, seminars and discussions
Course responsible/examiner: Farid Akhtar
As an energy carrier, hydrogen plays a crucial role in decarbonization and the future of a low-carbon society, where hydrogen production is one of the most important steps in the hydrogen chain. Hydrogen itself can be produced from different processes, and different colors were used to identify the environmental impact, where green hydrogen has been identified as the best in the future. However, the green hydrogen covers only about 1% of the world's production, even with increasing interest. Therefore, learning more about the green hydrogen production will be essential to reach the goal. In the course of hydrogen production, different technologies will be briefly discussed, and the green hydrogen production via water electrolysis or biomass gasification will be the focus, where the principle, component, process, together with sector coupling, will be discussed, and the state-of-the-art and the potential will be covered. To combine with specific implementation and special interests, one seminar, together with a report, will be arranged. It is expected that after this course, basic knowledge of hydrogen production technologies as well as their state-of-the-art and challenges will be clarified; Specific knowledge on the green hydrogen product from principle to the process will be provided, and the students can propose their ideas on how to promote green hydrogen production. Course StartSeptember, 22nd 2025 Seminars- September, 22nd 2025 at 13:00- Week 41, date and time to be decided- October 24th, 2025 at 13:00 Study hours40 hours over 4 weeks time Target GroupThis course is aimed at professionals working in or entering fields related to energy, sustainability, and environmental technologies and is especially beneficial for those with an interest in green hydrogen production and its practical implementation within the broader context of a low-carbon society. Specifically, it is relevant for: Engineers and technical professionals in the energy sector who want to deepen their understanding of hydrogen technologies. Researchers and scientists focused on renewable energy, decarbonization, or green technologies. Policy makers and energy consultants involved in shaping or advising on energy transition strategies. Project managers and business developers working in the development or implementation of hydrogen-based projects. Graduate students and academic professionals pursuing advanced studies or research in energy systems, chemical engineering, or environmental science. Entry RequirementsMOOC Hydrogen for sustainable solutions. Other courses or practical experience. This can be validated through and interview or written test. Please note that the number of participants for this course is limited, so we encourage you to apply as soon as possible! Education providerLuleå University of TechnologyTeacher: Xiaoyan Ji
Do you want to deepen your understanding of hydrogen gas behavior in various scenarios—and at the same time strengthen your role in the green transition? This course provides knowledge of both controlled and uncontrolled reactions in hydrogen systems, with a focus on safety, efficiency, and practical application. The course content is: · Unignited releasesExpanded and under-expanded jets · Ignition of hydrogen mixturesPiloted and spontaneous ignition · Deflagrations and detonationsVented and non-vented deflagrationsVented and non-vented detonationsDDT, deflagration to detonation transition · Jet flamesFroude-based correlationsBlow-off phenomenonJet flame characteristics Study hours40 hours distributed over 5 weeks SeminarsNovember, 14th at 11:00-12:30November, 28th at 11:00-12:30December, 12th at 11:00-12:30 Dates and times can be discussed online among participants once the course starts. It is ok to eat lunch during the seminars. Target groupThis course is aimed at professionals working in or entering fields related to safety of hydrogen handling and hydrogen infrastructure. Specifically, it is relevant for engineers and technical professionals in all fields where hydrogen is used. Entry requirementsBachelor's degree of at least 180 ECTS, or equivalent, which includes courses of at least 60 ECTS in engineering and/or natural sciences. Alternatively other courses and practical experience. The latter can be validated through an interview or written test. ExaminationIn order to pass the course the student must:- Attend the three compulsory online meetings.- Write an essay which is reviewed by other students and approved by the teacher.- Pass four compulsory quizzes. Education providerLuleå University of TechnologyTeacher: Michael Först
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration
The main goal of the course is to look into Virtual and Augmented Reality and investigate how this technology, together with the recent developments in AI and Robotics, support sustainability and green transition. The course starts with a brief overview of the concept of reality and virtuality and looks into some fundamentals of human perception and action. It explores, for example, how we build mental representations and why we perceive some artificially created experiences as real even when we know that they are fictional. We will also apply the concept of artificial sensory stimulation to other living organisms and look into experiments on virtual reality for other animals and even ants. The course then proceeds to look into the fundamental research in reality-virtuality continuum and an overview of relevant technologies. We will see how modern graphics and rendering technology allows to “hijack” human sensory input and how tracking technologies allow to collect data from human actions. This vital concept and technology part will serve as a foundation to discuss further questions related to application of Virtual and Augmented Reality. Those include ethics of extended reality applications, for example related to neuroplasticity effects of virtual reality or user profiling, or cybersecurity aspect of possible user identification. However, the main focus of the course is on sustainability and green transition. The course looks beyond the potential ability of virtual and augmented reality technologies to reduce the need for physical travel (e.g. through telepresence), and discusses such topics related to Industry 5.0. For example, design and simulation, where modern technology allows to reduce the needs for physical prototyping and helps to optimize product development processes, or industrial process optimization through digital tweens, or immersive training and education, allowing adaptive learning pace for each student. The course includes an invited lecture with industry professionals. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Online meetings (estimated dates): - April 1, 15:00 - 17:00 CET: Introduction and Information - April 22, 15:00 - 17:00 CET: QA - June 11, 15:00 - 17:00 CET: Presentations Study hours: 80 This course is given by Örebro University.
This course addresses the urgent need to transition metallurgical industries towards sustainable, carbon-free practices. Designed for industrial professionals and researchers, it provides comprehensive understanding of both environmental impacts and cutting-edge technological solutions transforming metal production. The curriculum begins with the context and imperative for sustainable metallurgy within global climate frameworks. You will explore alternative reduction technologies, studying hydrogen-based processes, electrolysis, and innovative techniques while evaluating your technical feasibility and real-world applications. The course examines sustainable energy integration challenges, focusing on renewable sources, storage technologies, and grid strategies essential for industrial implementation. Special attention is given to hydrogen's revolutionary role in metallurgy, covering production methods, applications in metal processing, safety considerations, and infrastructure requirements. Through a culminating entrepreneurial project, you will develop innovative solutions by forming interdisciplinary teams to address specific challenges, creating business plans and presentations while maintaining reflective learning journals. This transformative educational experience builds both theoretical knowledge and practical skills, enabling you to become an effective change agent driving the decarbonization of metallurgical processes—an essential step toward industry's sustainable future. Course content Mapping Emissions in Metallurgical Systems Low-Carbon & CO₂-Free Metallurgy Technologies Integrating Hydrogen & Renewables into Metallurgical Operations Infrastructure, Supply-Chain Logistics & Plant Retrofitting You will learn to Analyze the environmental impact of traditional metallurgical processes and articulate the strategic importance of CO₂-free alternatives within global climate frameworks Evaluate breakthrough hydrogen-based reduction technologies, electrolysis methods, and other innovative approaches for sustainable metal production Develop strategies for integrating renewable energy sources into metallurgical operations, addressing intermittency and storage challenges Apply comprehensive technical and economic assessment methods to evaluate the feasibility of implementing carbon-neutral solutions in industrial settings Design transformation roadmaps for existing metallurgical facilities transitioning to low-carbon production methods Lead change initiatives within organizations by applying entrepreneurial thinking to overcome technological, economic, and social barriers to sustainable metallurgy Target group The course is designed for professionals at the intersection of metallurgy and sustainability who are driving industrial transformation towards carbon neutrality. It's ideal for Industrial PhD students and researchers exploring sustainable metallurgical processes Process engineers and technical managers in metal production facilities Sustainability and environmental compliance specialists in metallurgical industries R&D professionals developing next-generation metal production technologies Industrial strategists planning long-term decarbonization pathways Technology developers and entrepreneurs working on clean-tech solutions for metals production