COURSE DESCRIPTION
Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you.
You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English.
The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University:
The emergence of artificial intelligence has created a new opportunity to apply machine learning (ML) in industry 4.0. In this era of the Internet of Things and Big data, processing of a large amount of data would not be possible without ML. Thus, ML made industrial production smarter than ever before. So, learn the course “Machine learning for Industry 4.0” to bring in new business models in your company and boost productivity using ML. The course provides knowledge about basics of ML and data, describes ML algorithms and tools and also explains the concept of Industry 4.0 and digitalization in industry 4.0. The individual processes can be better understood and optimized with the help of the knowledge from the course. Also, it could have an important contribution in analysing the industrial data set, improving results, and making decision and/or predictions for failure, demand, sales, and production. This course is a collaboration between Högskolan Väst, Linnéuniversitetet and Mälardalens Högskola. It consist of three course modules: Introduction to Machine Learning (MDH – 2 credits, Basic level), Industry Digitalization – Industry 4.0 (HV – 2,5 credits, Advanced level), Applied Machine Learning (LNU – 3 credits, Advanced level). Students who pass all three courses will receive a diploma from Learning for Professionals.
Vi ser redan hur digitaliseringen har utmanat och transformerat flera olika områden i vår vardag såväl som yrkesliv. I denna kurs ligger fokus på de enorma möjligheter som skapas i och med att industrin digitaliseras. Vid varje nytt tekniksprång behöver man förstå hur tekniken fungerar för att kunna utnyttja den på bästa sätt. Digitaliseringen kommer att påverka olika industrier på olika sätt och i olika takt beroende på vilka nya tekniker som är applicerbara i produktionsmiljön och hur företagens värdekedja är uppbyggd. Denna kurs startar därför med en översikt över industri 4.0 och grunderna för digitalisering. Efter detta går vi igenom ett smörgåsbord av vanliga digitaliseringstekniker, hur de fungerar samt exempel på tillämpningar. Meningen är att du skall kunna skapa dig en uppfattning om vad som kan vara intressant för just ditt företag. Exempel på tekniker är big data, cyber security, IoT, blockkedjor, augmented reality, deep learning (AI), m.fl.
Berör några av de grundläggande koncepten och teorierna kring strategisk teknologihantering och granskar viktiga strategiska beslut i centrum av teknik- och innovationshantering utifrån företagets konkurrenssituation. Dessa kan till exempel beröra valet av teknologi, disruptiva innovationer, tidpunkten för teknikutvecklingsinitiativ, implementeringsstrategier, modulär design, skapande av strategiska partnerskap eller anpassning till snabb teknisk förändring.
Kursen fokuseras på grundläggande metodik för den virtuella fabriken inom konceptet industrins digitalisering. Koncepteten virtuella fabriker, fabriksskanning och AR/VR (Augmented och Virtual Reality) kopplat mot industrins digitalisering tas upp i kursen och diskuteras. Andra moment som diskuteras är databassystem kopplade mot simuleringsprogramvara samt autonoma robotceller.
In this course, you will gain insight in components and technologies included in the Industrial Internet of Things (IIoT). Designed specifically for manufacturing sector professionals, the course provides knowledge about the infrastructure, the technologies and requirements needed to generate, transport and manage data in the Industrial Internet of Things (IIoT) system which is one of the main building blocks towards digitalization and smart factories. It includes project work, laboratory exercises and assignments where the student gets knowledge of different applications of IIoT in the manufacturing industry.
In the modern IT world, businesses often have access to large amounts of data collected from customer management systems, web services, customer interaction, etc. The data in itself does not bring value to the business; we must bring meaning to the data to create value. Data mining and machine learning is an area within computer science with the goal of bringing meaning to and learning from data. This course will focus on applied machine learning, where we learn what algorithms and approaches to apply on different types of data.This course is for experienced developers working in the industry. The course includes the following: Supervised learning, different types of data and data processing, Algorithms for handling text documents, Algorithms for handling data with numerical and categorical attributes, Neural Networks and Deep Learning for image recognition