COURSE DESCRIPTION
The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se.
About the course Smart Healthcare with Applications, 4 credits
Who is this course for?
The course suits you with any Bachelor’s degree (equivalent of 180 Swedish credit points / ECTS credits at an accredited university) who have an interest in applying Artificial Intelligence (specifically Machine Learning) to healthcare. Leadership/management experience in health-related organization/industry OR a Bachelor degree in computer science is advantageous.
What will you learn from this course?
Healthcare as a sector together with other health-related sources of data (municipalities, home sensors, etc.), is now in a place and can take advantage of what data science, Artificial Intelligence (AI), and machine learning (ML) have to offer. Information-driven care has the potential to build smart solutions based on the collected health data in order to achieve a holistic fact-based picture of healthcare, from an individual to system perspective. This course aims to provide a general introduction to information-driven care, challenges, applications, and opportunities. Students will get introduced to artificial intelligence and machine learning in specific, as well as some use cases of information-driven care, and gain practice on how a real-world evidence project within information-driven care is investigated.
What is the format for this course?
Instruction type: The lectures, announcements, and assignments of this course will be fully online via a learning management system and presented in English. Each lecture is delivered through a video conference tool with a set of presentation slides displayed online during each class session. Online practical labs (pre-written Python notebooks) are also provided in the lectures.
The emergence of artificial intelligence has created a new opportunity to apply machine learning (ML) in industry 4.0. In this era of the Internet of Things and Big data, processing of a large amount of data would not be possible without ML. Thus, ML made industrial production smarter than ever before. So, learn the course “Machine learning for Industry 4.0” to bring in new business models in your company and boost productivity using ML. The course provides knowledge about basics of ML and data, describes ML algorithms and tools and also explains the concept of Industry 4.0 and digitalization in industry 4.0. The individual processes can be better understood and optimized with the help of the knowledge from the course. Also, it could have an important contribution in analysing the industrial data set, improving results, and making decision and/or predictions for failure, demand, sales, and production. This course is a collaboration between Högskolan Väst, Linnéuniversitetet and Mälardalens Högskola. It consist of three course modules: Introduction to Machine Learning (MDH – 2 credits, Basic level), Industry Digitalization – Industry 4.0 (HV – 2,5 credits, Advanced level), Applied Machine Learning (LNU – 3 credits, Advanced level). Students who pass all three courses will receive a diploma from Learning for Professionals.
Today, the explosion of data has created new opportunities to apply machine learning (ML). Handling of the large amounts of data created by the very rapid digitization would not be possible without Machine Learning (ML). The purpose of the course "Introduction to Machine Learning" is to give you the foundation for ML. You will get an introduction to the basic areas of ML: data, statistics and probability for ML.
In contrast to learning how to do manual testing, in this course you will learn how to generate tests automatically in the sense that test creation satisfying a given test goal or given requirement is performed automatically. This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation.
This course will teach you how to build convolutional neural networks. You will learn to design intelligent systems using deep learning for classification, annotation, and object recognition.
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
The course will give insights in fundamental concepts of machine learning and actionable forecasting using predictive analytics. It will cover the key concepts to extract useful information and knowledge from big data sets for analytical modeling