COURSE DESCRIPTION
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
The aim of this course is to provide participants with the principles behind model-driven development of software systems and the application of such a methodology in practice. Modelling is an effective solution to reduce problem complexity and, as a consequence, to enhance time-to-market and properties of the final product.
The purpose is to give the students an overview of issues and methods for development and assurance of safety-critical software, including details of selected technologies, methods and tools.
The aim of this course is to give students insight about certification and about what it means to certify/self-assess safety- critical systems with focus on software system and to create a safety case, including a multi-concern perspective when needed and reuse opportunities, when appropriate.
This course provides an understanding of the fundamental problems in software testing, as well as solid foundation in the practical methods and tools for a systematic state-of-the-art approach to testing of software.
The course will give insights in fundamental concepts of machine learning and actionable forecasting using predictive analytics. It will cover the key concepts to extract useful information and knowledge from big data sets for analytical modeling