COURSE DESCRIPTION
I den här kursen har vi valt att fokusera på innovation som process; hur gör man för att ta en idé till verklighet så att den kan skapa nytta?
Vi sätter dig själv i centrum, med dina egna idéer. Utifrån det försöker vi använda dina nyvunna kunskaper och erfarenheter för att förstå hur du som rådgivare kan stödja och stimulera innovationsutveckling inom de gröna näringarna.
Kursen består av sex webbmoduler samt en workshop där du får möjlighet att diskutera och pröva tillsammans med andra rådgivare.
I kursen igår även individuell coachning; vi diskuterar dina nyvunna kunskaper och relaterar dem till de erfarenheter du får när du börjar arbeta praktiskt med att stimulera och stödja verkliga innovationsprocesser i din vardag.
Detta är en uppdragsutbildning. Om du är intresserad av att gå kursen eller har andra frågor så är du välkommen att ta en kontakt via kurssidan på webben.
The course is broken down into: Basic Bayesian concepts Selecting priors, deriving some equations Bayesian inference, Parametric model estimation Sampling based methods Sequential inference (Kalman filters, particle filters) Approximate inference, variational inference Model selection (missing data) Bayesian deep neural networks
The course aims to provide knowledge about precision technology for Livestock production (Precision Livestock Farming, PLF) including its principles and frameworks, design and evaluation with a focus on end-user perspective and commercialisation.
Att kunna utveckla och erbjuda en produkt eller tjänst som skapar ett värde för kund är centralt inom verksamheter. För att lyckas med detta behövs kunskap om kunder och deras värdeskapande processer och här kan kundresan vara ett effektivt verktyg. Detta sätter vi fokus på i denna kurs. Kursen behandlar värdeskapande processer hos kunder - hur värde kan skapas och förstärkas hos kunder, klienter och andra som verksamheten riktar sig till - med fokus på kundresor. Kunskap som du kan använda för att utveckla din verksamhet, få ökad konkurrenskraft och lönsamhet och en bättre förståelse för dina kunder. Du kommer att få lära dig vad en kundresa är och hur det kan vara ett verktyg för att utveckla din verksamhet. Du får också lära dig hur du samlar in kunskap och insikter kring kunder och deras upplevelser med hjälp av olika metoder samt hur du kan använda detta för att identifiera förbättringsmöjligheter i din verksamhet. Du får ta del av teorier och praktiska verktyg med koppling till aktuell forskning. Kursinnehållet kommer att kopplas till kursdeltagarnas egna verksamheter där du som deltagarna ges möjlighet att diskutera frågor och utmaningar från din verksamhet. Kursen består digitala föreläsningar, filmer samt digitala workshops med följande tema: observation och intervju som metod, kundresa som verktyg samt värdeskapande processer. Kursen är på avancerad nivå och ger 5 högskolepoäng. Den riktar sig till dig som är yrkesverksam och ges på deltid så att studier och arbete kan kombineras. Undervisningen sker på svenska och engelska och genomförs på distans via Canvas som är Karlstads universitets lärplattform. Kursen är avgiftsfri. Antal platser är begränsat.
The Internet of Things (IoT) is a networking paradigm which enables different devices (from thermostats to autonomous vehicles) to collect valuable information and exchange it with other devices using different communications protocols over the Internet. This technology allows to analyse and correlate heterogeneous sources of information, extract valuable insights, and enable better decision processes. Although the IoT has the potential to revolutionise a variety of industries, such as healthcare, agriculture, transportation, and manufacturing, IoT devices also introduce new cybersecurity risks and challenges. In this course, the students will obtain an in-depth understanding of the Internet of Things (IoT) and the associated cybersecurity challenges. The course covers the fundamentals of IoT and its applications, the communication protocols used in IoT systems, the cybersecurity threats to IoT, and the countermeasures that can be deployed. The course is split in four main modules, described as follows: Understand and illustrate the basic concepts of the IoT paradigm and its applications Discern benefits and drawback of the most common IoT communication protocols Identify the cybersecurity threats associated with IoT systems Know and select the appropriate cybersecurity countermeasures Course Plan Module 1: Introduction to IoT Definition and characteristics of IoT IoT architecture and components Applications of IoT Module 2: Communication Protocols for IoT Overview of communication protocols used in IoT MQTT, CoAP, and HTTP protocols Advantages and disadvantages of each protocol Module 3: Security Threats to IoT Overview of cybersecurity threats associated with IoT Understanding the risks associated with IoT Malware, DDoS, and phishing attacks Specific vulnerabilities in IoT devices and networks Module 4: Securing IoT Devices and Networks Overview of security measures for IoT systems Network segmentation, access control, and encryption Best practices for securing IoT devices and networks Organisation and Examination Study hours: 80 hours distributed over 7 weeks Scehduled online seminars: January 30th 2024, February 12th 2024 and 11th of March Examination, one of the following: Analysis and presentation of relevant manuscripts in the literature Bring your own problem (BYOP) and solution. For example, analyse the cybersecurity of the IoT network of your company and propose improvements The number of participants in the course is limited, so please hurry with your application!
Skills in development work are becoming increasing importance in professional life. This course offers you the opportunity to develop knowledge and skills in product development, production development, and business development, as well as the relationship between these areas. You will be introduced to systematic working methods for product development, production development, and business development, with a specific focus on innovation and creativity in practical contexts. The goal of the course is to provide a deep understanding of the application of various processes in different types of development work. The objective is for course participants to enhance their ability to understand and apply development processes and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability in the manufacturing industry. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are incuded. Study hours: 40 hours distributed over 7 weeks Scheduled online seminars: 30th January, 13th February, 27th February, and 13th March 2024. The course begins on the 30th of January 2024: (Week 5) 30th January: Webinar 1: Introduction – Part 1 (Focus: Product development) (Week 7) 13th February: Webinar 2: Part 2 (Focus: Production development) (Week 9) 27th February: Webinar 3: Part 3 (Focus: Business development) (Week 11) 13th March: Webinar 4: Final presentations and course evaluation Target Group This course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry Requirements To be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 ntry Requirementscredits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Link to Syllabus Please note that the number of participants for this course is limited, so we encourage you to apply as soon as possible!
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. Following are suggested modules in the virtual commissioning course, each with its own specific role in the process. These modules work together to create a comprehensive virtual commissioning process, allowing engineers to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Link to course syllabus Pre-requisite 75 university credits in production technology, mechanical engineering, product and process development, computer technology and/or computer science or equivalent or 40 credits in technology or equivalent and at least 2 years of full-time professional experience from a relevant area within industry. In addition, good knowledge in English, equivalent to English A/English 6 are required. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration Students Master's/PhD degree students who are involved in energy, digitalization, controls and production fields. Scehduled online seminars: None Study hours: 80 hours distributed over 10 weeks The number of participants in the course is limited, so please hurry with your application!