Applications 2024-09-04 - 2024-11-15
COURSE DESCRIPTION
In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability.
Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition.
This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals.
Target group
The target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants.
Online seminars
December 10th at 14.00 to 15.00
January 14th at 14.00 to 15.00
January 31st at 14.00 to 15.00
February 13th at 14.00 to 15.00
February 28th at 14.00 to 15.00
Entry requirements
Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent.
Or professional experience requirements four to five years of experience in relevant industries.
This course will teach you how to build convolutional neural networks. You will learn to design intelligent systems using deep learning for classification, annotation, and object recognition.
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
The course will give insights in fundamental concepts of machine learning and actionable forecasting using predictive analytics. It will cover the key concepts to extract useful information and knowledge from big data sets for analytical modeling
The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Three online meetings. Dates TBD – Starting mid November.
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Business models that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. This course has a particular focus on the interplay between business models, product innovation and production processes. Through this course, you will explore the critical relationship between sustainable practices and business strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for business development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various business model practices in different types of development work. The objective is for course participants to enhance their ability to understand and apply business development processes in the manufacturing industry, and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are incuded. Study hours 40 hours distributed over 7 weeks from week 45, 2024 to week 52, 2024. Webinar 1: November 11Webinar 2: December 3Webinar 3: December 16 Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024. This course Business development for circular flow together with Product development for circular flows and Production for cirkular flows are free standing independent courses that build on knowledge in the field.