COURSE DESCRIPTION
This course is designed for engineers, scientists, operators, and managers interested in utilizing AI-based methods for condition monitoring and prognostics in industrial systems and high-value assets. Participants will learn to identify common failure causes and predict Remaining Useful Life (RUL) using historical data, involving tasks such as data processing, feature selection, model development, and uncertainty quantification. Led by experienced professionals from industry and academia, the course covers the basics of prognostics and introduces various AI methods, including deep learning. It represents state-of-the-art AI-driven prognostic techniques, advanced signal processing, and feature engineering methods.
Would you like to know what Industry 4.0 is about? Then this course is for you! In the course, we look at enabling technologies of Industry 4.0 from a human and industrial perspective. The course covers many topics and you will learn the basic terminology related to Industry 4.0 as well as insight and understanding of the Fourth Industrial Revolution and how it is set to affect industry and individuals.
Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you. You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English. The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University: Internet of things for industrial applications, 5 credits Simulation of production system, 5 credits Big data for industrial applications, 5 credits
This course is taught in Swedish. Lean production consists of a set of principles and techniques, which are included in the business's systems and processes. These can be derived into a particular business philosophy and strategy that encompasses the entire organization's operations. The course lays the foundation for continued broader and deeper studies of how operations are run at the new generation of world-leading companies with a Lean business strategy. This starting course covers the following topics: Strategies and principles for Lean production Stable processes and standardized working methods Design of value streams Pulling and pushing production systems Quality philosophy and quality methodology Teamwork, commitment and participation Management system with PDCA methodology Business collaboration along value flows Transformation to a Lean corporate culture Course structure Five two-day meetings consisting of discussion lectures, practical exercises and analyzes of operations in companies that practice Lean methodology. Course literature Jeffrey Liker, The Toyota Way, Liber, 2009 Modig & Åhlström, This is Lean Petersson et al., Lean turns deviations into success, 2009 Target group People within organizations considering and Lean business strategy. See all courses that KTH Leancentrum offers
Opens in May 2025. The Swedish version of the course, namely ”Varför välja trä vid nästa byggprojekt?” is already open. For more iformation contact course coordinator dimitris.athanassiadis@slu.seCourse DescriptionDifferent types of biomaterials (e.g., wood) are crucial in the challenge of decarbonizing the built environment and reducing the carbon footprint of buildings and infrastructure by replacing materials like steel and cement, which have high carbon dioxide emissions. At the same time, we must not forget that it is important to preserve biodiversity and the social values of our forests. The 13 modules of the course cover many forestry related subjects, including harvesting methods, biodiversity, forest management, logistics, the role of forests in the climate transition, carbon storage, environmental benefits of multi-story buildings with wood, and more. The goal is that participants will gain a shared understanding of Swedish forestry so that they can make well-informed decisions about material choices for their next construction project. Course PeriodThe course will be active for 3 years. Content Forest history: The utilization of forests in Sweden throughout the past years Forestry methods and forest management Forest regeneration Wood properties Forest mensuration Forest tree breeding The forest's carbon balance Business models and market development: Focus on wood high rises Nature conservation and biodiversity in the forest Course StructureThe course is fully digital with pre-recorded lectures. You can participate in the course at your own pace. Modules conclude with quizzes where you can test how much you have learned. You will learn aboutUpon completion of the course, you will have learned more about various forest-related concepts, acquired knowledge of forest utilization in Sweden throughout the past years, increased your understanding of forest management and how different management methods affect biodiversity in the forest, and learned about the forestry cycle—from regeneration to final harvesting, etc. Who is this course for?This course is designed for professionals such as architects, municipal employees working with urban planning and construction, individuals in the construction and civil engineering sector, and those in other related fields. This is an introductory course and will contribute to upskilling of the entire construction sector, thereby increasing the industry's international competitiveness while also providing important prerequisites for the development of future sustainable, beautiful, and inclusive cities. Since the course is open to everyone, we hope that more groups, such as students, doctoral candidates, forest owners, and others with an interest in forestry, will take the course and engage with inspiring lectures where scientific knowledge primarily produced within SLU (Swedish University of Agricultural Sciences) is presented.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. You may join the course from March 17 until the middle of April, 2025. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.