COURSE DESCRIPTION
If you are interested in learning more about the critical application of sustainability, then this course will be of definite interest. This course considers sustainability from a number of perspectives, particularly how it is approached, interpreted, worked alongside and implemented. The course will be of interest to all who are keen to learn more about sustainability, especially from a critical perspective.
The issues focused on include democracy, personal interpretation and cooperation.
This is an introductory course within the field of sustainability science with contributions from experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Poland, Sweden and Lithuania.
The course is structured into three parts, beginning with an introduction to the Anthropocene which helps to provide some important context for the course. The second and third chapters focus on the critical issues at play when it comes to sustainability including working for sustainability and being together for sustainability.
Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se
This is a course for professionals and PhD students seeking a wider understanding of our current global predicaments, how to make sense of them, and how to respond. The first module introduces the Anthropocene, The Great Acceleration, Planetary Boundaries along with causal relationships between energy, technology, economy, values and the human and more-than-human experience. The second module explores how our own cognition, values, norms and emotions guide our responses to the crises of our time, and how we can formulate coherent responses based on our experiences. The third introduces a way of reasoning about the world in terms of interconnected systems instead of independent problems, and explores what such a view means for us. The course is run online with 2h highly interactive seminars connected to each module along with recorded material, readings and exercises.
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Miljö, klimat och hälsa Kursen ger en fördjupad förståelse för hur hälsa samspelar med globalisering och miljö- och klimatförändringar, och hur hållbara lösningar kan utvecklas på lokal och global nivå för att möta framtidens utmaningar. Kursens innehåll Globala processer såsom miljö- och klimatförändringarDe globala hållbarhetsmålen / Agenda 2030HälsokonsekvensanalysKlimatanpassningRamverk inom miljö- och klimatpolitik. Vidare behandlar kursen specifikt klimatförändringar och deras effekter på hälsa i vårt nordeuropeiska klimatområde. I det sammanhanget behandlas också särskilt utsatta miljöer respektive känsliga patientgrupper och individer. Även värmens effekter vid arbete samt klimatanpassning och förebyggande av väderrelaterade risker för boende och inom hälso- och sjukvård ingår. Larmkedjor, handlingsplaner och beredskapsfrågor inom vård- och omsorg tas upp, och effektiviteten av förebyggande åtgärder inom vård- och omsorg. Omfattning Kursen är uppdelad i tre delar, med totalt 15 filmade föreläsningar. Medverkande Christofer Åström (Medicine doktor, Folkhälsa och klinisk medicin, Umeå universitet) Maria Nilsson (Professor, Epidemiologi och global hälsa, Umeå universitet) Chris Ebi (Professor, Center for Health and the Global Environment, University of Washington) Eva-Lotta Glader (Docent, överläkare, Folkhälsa och klinisk medicin, Umeå universitet) Gustav Strandberg (Filosofie doktor, SMHI)
This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges. The students bring their own case study example as the background for a practical project, through which the student is also finally examined. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Online meetings (estimated): 14 Oct.: Introduction11 Nov.: Project Idea16 Dec.: Project Presentation Study hours: 80 This course is given by Örebro University.
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs