Applications 2024-12-08
COURSE DESCRIPTION
Chemical processes play a crucial role in the green transition, from producing sustainable materials to reducing emissions. This course provides a fundamental understanding of chemistry and its application in sustainable solutions.
Course Content
What You Will Learn
Who Is the Course For?
The course is designed for chemists, process engineers, and other professionals in the chemical industry who want to understand and apply sustainable chemical processes.
Language
The course is conducted in English.
Additional information
The course is offered for a fee.
The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you. What will you learn?You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society? Who is the course for?The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up. Who are the teachers?Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration
Energy cycle and basics of redox chemistry - The course will first give an introduction about some fundamental concepts in physics and chemistry that are essential to understand the transfer of energy in living organisms. Photosynthetic organisms as green batteries - The course will then focus on plants and their extraordinary energy metabolism allowing them to store solar energy to power the rest of living organisms as well as our societies. More sustainable future - Through many examples, we will see how photosynthetic organisms can be used to operate a green transition at different levels of our societies. Lectures are mandatory, no exam. On-site. Start date earliest Autumn 2025. Learning outcomes Get, through well illustrated lectures, a primary contact with the scientific tools and knowledge necessary to understand the concepts of bioenergy. Accessible to Suitable for interested public, primary school teachers, students and all persons out of gymnasium.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours
The course High-performance Computer Vision in the Cloud provides participants with the necessary tools and skills to navigate large-scale computing infrastructures, emphasizing scalability and performance optimization. Large computing infrastructures can be the key to driving the industry’s green transition. The course recognizes the instrumental role of large computing infrastructures in facilitating a green industry transition, enabling industrial actors to reduce environmental impact and optimize resource utilization, aiming to minimize energy consumption. The course covers concepts such as enabling technologies (e.g., CUDA), distributed computing, multi-core architectures, hardware versus software acceleration, container solutions(e.g., Docker and Kubernetes), as well as metrics and tools for monitoring performance and memory management, providing participants with a comprehensive skill set to lead environmentally responsible solutions in the digital era. Scheduled online seminars January 27th, 14:00-15:30 February 7th, 14:00-15:30 February 17th, 14:00-15:30 February 28th, 14:00-16:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
The course Leadership for Societal Change 1: Building Change Mindsets and Reflective Competencies is a course for you who want to actively participate in the industrial and societal change towards sustainability. The course aims to develop your reflective competence, make you aware of the learning that exists in your experiences, and master your further personal development as a transformative agent and leader. The course is structured around six delimited assignments that are completed separately. The tasks are taken from an assignment bank where you choose which tasks you do and in what order. The course ends with a summarizing assignment where you capture what you have learned through the six assignments completed. All courses within the Leadership for Sustainable Change course package are designed to be flexible and assume that it may be difficult to leave work and come to campus at specific dates and times. As a student, you can therefore complete the course assignments in your own order and at your own pace using a digital platform. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Study effort: 80 hours