Applications 2024-12-08
COURSE DESCRIPTION
Chemical processes play a crucial role in the green transition, from producing sustainable materials to reducing emissions. This course provides a fundamental understanding of chemistry and its application in sustainable solutions.
Course Content
What You Will Learn
Who Is the Course For?
The course is designed for chemists, process engineers, and other professionals in the chemical industry who want to understand and apply sustainable chemical processes.
Language
The course is conducted in English.
Additional information
The course is offered for a fee.
The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you. What will you learn?You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society? Who is the course for?The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up. Who are the teachers?Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration
Energy cycle and basics of redox chemistry - The course will first give an introduction about some fundamental concepts in physics and chemistry that are essential to understand the transfer of energy in living organisms. Photosynthetic organisms as green batteries - The course will then focus on plants and their extraordinary energy metabolism allowing them to store solar energy to power the rest of living organisms as well as our societies. More sustainable future - Through many examples, we will see how photosynthetic organisms can be used to operate a green transition at different levels of our societies. Lectures are mandatory, no exam. On-site. Start date earliest Autumn 2025. Learning outcomes Get, through well illustrated lectures, a primary contact with the scientific tools and knowledge necessary to understand the concepts of bioenergy. Accessible to Suitable for interested public, primary school teachers, students and all persons out of gymnasium. Mer information om kursstart och anmälan publiceras inom kort.
Batteries are key for electrifying transportation. They store the energy which is used to power the electric vehicles. This technology shift from internal combustion engines offers several advantages: reduced CO2 emissions, increased efficiency, lower operating costs, less noise. While electric vehicles have made significant advancement during the last decade, challenges remain regarding performance, ageing, safety, cost and sustainability. Moreover, the battery integration to the grid provides a new technology area where large gains can be made in terms of balancing power and use of back-up storage. R&D work in these fields are taking large steps forward at present, both in academia and in industry. This course provides an introductory overview of batteries and their applications in electrification. Participants will gain a fundamental understanding of battery chemistry, performance metrics, and various types of batteries commonly used in today's technologies. The course will also explore the role of batteries in the transition to a sustainable energy future, including their applications in electric vehicles, renewable energy storage, and their role in grid stabilization. Course period The course is given Spring 2025. Topics Module I: Energy storage Fundamentals of electrochemical energy storage, including batteries, supercapacitors, and fuel cells. Battery chemistry, materials, cell and pack design, battery aging and safety. Next-generation battery technologies and fuel cell systems, including hydrogen production and storage. Module II: Vehicle-Grid Interaction The Swedish power system. EV charging infrastructure and equipment. Smart charging and V2G. Grid tariffs and balancing services. Course structure The course is organized in two modules: Energy storage and Vehicle-Grid Interaction. Within each module, digital lectures will be offered, with possibility of interaction between lecturer and students, and among students. The students will respond to short quizzes to evaluate their understanding of the lectures. You will learn By the end of this course, students will be able to: Explain the basic principles of battery operation and chemistry. Understand the role of batteries in the electrification of transportation and energy systems. Analyze the challenges and opportunities associated with battery technology development. Understand potential risks and gains with battery interaction with the grid. Who is the course for? This course is primarily designed for industry professionals who target to be involved in the development, manufacturing, or deployment of battery technologies, electric vehicles and power systems. The course is suitable for people with a background from science and technology education, and seeking to specialize in energy storage and electric vehicles. It also targets researchers working in the field of electromobility. Finally, policymakers and regulators interested in understanding the technical and economic aspects of energy storage and electric vehicle integration are also invited to participate. This is an introductory course, and it will show a path for life-long learning to build more in-depth knowledge in each concept introduced in this course.
Opens in May 2025. The Swedish version of the course, namely ”Varför välja trä vid nästa byggprojekt?” is already open. For more iformation contact course coordinator dimitris.athanassiadis@slu.seCourse DescriptionDifferent types of biomaterials (e.g., wood) are crucial in the challenge of decarbonizing the built environment and reducing the carbon footprint of buildings and infrastructure by replacing materials like steel and cement, which have high carbon dioxide emissions. At the same time, we must not forget that it is important to preserve biodiversity and the social values of our forests. The 13 modules of the course cover many forestry related subjects, including harvesting methods, biodiversity, forest management, logistics, the role of forests in the climate transition, carbon storage, environmental benefits of multi-story buildings with wood, and more. The goal is that participants will gain a shared understanding of Swedish forestry so that they can make well-informed decisions about material choices for their next construction project. Course PeriodThe course will be active for 3 years. Content Forest history: The utilization of forests in Sweden throughout the past years Forestry methods and forest management Forest regeneration Wood properties Forest mensuration Forest tree breeding The forest's carbon balance Business models and market development: Focus on wood high rises Nature conservation and biodiversity in the forest Course StructureThe course is fully digital with pre-recorded lectures. You can participate in the course at your own pace. Modules conclude with quizzes where you can test how much you have learned. You will learn aboutUpon completion of the course, you will have learned more about various forest-related concepts, acquired knowledge of forest utilization in Sweden throughout the past years, increased your understanding of forest management and how different management methods affect biodiversity in the forest, and learned about the forestry cycle—from regeneration to final harvesting, etc. Who is this course for?This course is designed for professionals such as architects, municipal employees working with urban planning and construction, individuals in the construction and civil engineering sector, and those in other related fields. This is an introductory course and will contribute to upskilling of the entire construction sector, thereby increasing the industry's international competitiveness while also providing important prerequisites for the development of future sustainable, beautiful, and inclusive cities. Since the course is open to everyone, we hope that more groups, such as students, doctoral candidates, forest owners, and others with an interest in forestry, will take the course and engage with inspiring lectures where scientific knowledge primarily produced within SLU (Swedish University of Agricultural Sciences) is presented.
Utforska teknikerna bakom den gröna omställningen och lär dig om förnybar energi, energiomvandling och kritiska råmaterial för att kunna värdera energiteknologier och deras miljöpåverkan. Det här är för dig som vill förstå tekniker inom den gröna omställningen. Du lär dig om förnybar energi, energiomvandling och de kritiska råmaterial som driver utvecklingen. Efter kursen kan du beskriva och värdera energiteknologier och deras miljöpåverkan. Kursen går igenom olika energiteknologier inom den gröna omställningen, med fokus på tekniker som kopplar till förnybar energi och de processer som rör energiomvandling. Kursen utgår från ett materialperspektiv och syftar till att ge dig en förståelse för tillämpningar som energiomvandling i bränsleceller och batterier, vätgasproduktion genom elektrolys, artificiell fotosyntes, omvandling av solenergi till värme eller elektrisk energi i solfångare och solceller.Kursen ger också en överblick till andra förnybara energisystem såsom vindkraft, biomassa och vattenkraft, och hur dessa kan samverka i ett systemperspektiv i ett hållbart samhälle. Kritiska råmaterial är viktiga för den gröna omställningen, men de kan vara svåra att få tag på eller farliga för människor och miljö vid utvinning eller användning. Kursen tar upp problematiken kring dessa material och belyser sätt att minska beroendet genom alternativ eller effektivare användning. Kursens upplägg Kursen kan läsas både som MOOC-kurs och poänggivande kurs. MOOC-kursen är öppen att söka för alla oavsett bakgrund eller yrkeskategori och kräver inga förkunskaper. MOOC-kursen är en fortbildningskurs och ger inga högskolepoäng. Anmälan till MOOC-kursen görs genom att skicka ett mejl med ditt namn till mooc.fysik@umu.se. För de som är intresserade finns möjlighet att läsa kursen som en poänggivande kurs (3 högskolepoäng) och då gör man en avslutande tentamen. Anmälan till den poänggivande kursen görs genom att klicka på ”Apply here” nedan. Ingen kurslitteratur krävs, men hänvisning till material på webben eller artiklar kan förekomma. Kursen består av 10 föreläsningar (7 är förinspelade och 3 ges ”live”) på vardera 2 x 45 minuter, följt av diskussioner: Introduktion till den gröna samhällsomställningen Energi och energiomvandlingar Vindkraft Solceller och solvärme Batterier Vätgas - elektrolysörer och bränsleceller Det framtida energisystemets utformning Kritiska råvaror PFAS och miljöaspekter kring den gröna omställningen Resursanvändning, återvinning och återbruk Mål med kursen Efter avklarad kurs kan du: Förstå grundläggande begrepp kring den gröna omställningen, såsom land- och havsbaserad vindkraft, solceller, solvärme, vätgas, elektrolysörer, bränsleceller, Li-jon batterier, kritiska råmaterial och PFAS. Förstå grundläggande begrepp inom energi och energiomvandling såsom energi, effekt, energidensitet och verkningsgrad. Översiktligt beskriva processer som rör bränsleceller, batterier, solfångare, solceller och elektrolysörer.Förstå effektiviteten för olika processer vad gäller omvandling från en energiform till en annan, såsom värme till mekanisk energi, solljus till kemisk energi och kemisk energi till elektrisk energi. Beskriva materialspecifika egenskaper som är viktiga för funktionen för tillämpningar inom olika förnybara energisystem. Förklara grundläggande begrepp såsom global uppvärmning, energibalans och miljömässig hållbarhetFörstå grundläggande begrepp såsom kritiska råmaterial och vilka metoder och strategier som finns för att minska samhällets behov av dessa. Målgrupp Kursen riktar sig till dig som vill få en bättre förståelse kring de tekniker som diskuteras flitigt i samband med den gröna omställningen. Kursen passar både studenter på eftergymnasial nivå och yrkesverksamma så som till exempel politiker, journalister, ingenjörer och lärare. Anmälan För anmälan till MOOC-kursen skickar du ett mejl med ditt namn till mooc.fysik@umu.se. Då kommer du att få tillgång till kursmaterialet på lärplattformen Canvas (från och med 10 mars 2025). För anmälan till den poänggivande kursen klickar du på ”Apply here” nedan.