COURSE DESCRIPTION
Hur kan vi skydda våra digitala system samtidigt som vi bidrar till en mer hållbar framtid? Denna kurs ger dig de grundläggande kunskaperna i kryptografi och visar hur du kan använda energieffektiva tekniker för att möta både säkerhets- och miljöutmaningar i en digital värld. Du lär dig om hur hållbara lösningar och energieffektiv kryptering kan spela en nyckelroll i den gröna omställningen. Perfekt för dig som vill förena IT och hållbarhet. Kursen passar programmerare som vill bygga säkra, energieffektiva applikationer och förstå hur kryptografi påverkar digitala betalningssystem och blockchain.
Kursen är på distans, anpassad för självstudier och med studietakt på 12%. Genom praktiska övningar och teoretiska insikter får du verktygen för att börja integrera säkerhet och hållbarhet i dina digitala projekt. Examination sker genom inlämningsuppgift och muntlig redovisning.
Du lär dig om kryptering, autentisering, digitala signaturer och hashing – tekniker som skyddar allt från känslig data till digitala betalningssystem som kryptovalutor. Samtidigt får du insikt i hur hållbara lösningar och energieffektiv kryptering kan spela en nyckelroll i den gröna omställningen.
Kursen passar dig som:
Den här kursen ger dig som ingenjör eller beslutsfattare de nödvändiga verktygen för att framgångsrikt balansera ekonomiska och miljömässiga mål i arbetet med grön omställning. Du får kunskaper och färdigheter om matematiska och beslutsteoretiska metoder i arbetet med grön omställning. Kursen ges på distans och inkluderar föreläsningar och projektarbete. På kursen går vi igenom metoder inom optimering och industriell ekonomi med tillämpning på hållbar utveckling. Vi tar också upp metoder för scenariogenerering, flermålsoptimering (multi-objective optimization), scenariobaserad optimering, optimering under risk och osäkerhet. Du får även kunskap om metoder för att koppla resultat från optimeringsmodeller till ekonomiska faktorer för beräkning av skuggpriser och för att analysera effekter av skatter, utsläppsrätter, regleringar samt åtgärder mot en mer cirkulär ekonomi. Kursens upplägg Kursen ges på distans, med 12,5% studietakt. Förkunskapskrav: Ingenjörsutbildning eller motsvarande samt att du har grundläggande kunskaper i optimeringsmetoder. Kursen inleds med ett mindre antal föreläsningar som beskriver olika metoder samt ett projektarbete där några av de metoder som lärs ut i kursen tillämpas på verkliga problemområden. Examination sker genom ett projektarbete där du får tillämpa någon eller några av de metoder som du lärt dig på kursen, på ett verkligt problem kopplat till ditt yrkesområde. Mål med kursen Kursen ger dig kunskaper och färdigheter om matematiska och beslutsteoretiska metoder för att stödja företag och organisationer i arbetet med grön omställning. Målgrupp Den här kursen riktar sig till dig som är yrkesverksam ingenjör eller liknande, och som arbetar med eller har ett intresse för miljö och hållbarhetsfrågor.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours
The course High-performance Computer Vision in the Cloud provides participants with the necessary tools and skills to navigate large-scale computing infrastructures, emphasizing scalability and performance optimization. Large computing infrastructures can be the key to driving the industry’s green transition. The course recognizes the instrumental role of large computing infrastructures in facilitating a green industry transition, enabling industrial actors to reduce environmental impact and optimize resource utilization, aiming to minimize energy consumption. The course covers concepts such as enabling technologies (e.g., CUDA), distributed computing, multi-core architectures, hardware versus software acceleration, container solutions(e.g., Docker and Kubernetes), as well as metrics and tools for monitoring performance and memory management, providing participants with a comprehensive skill set to lead environmentally responsible solutions in the digital era. Scheduled online seminars January 27th, 14:00-15:30 February 7th, 14:00-15:30 February 17th, 14:00-15:30 February 28th, 14:00-16:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
The course Leadership for Societal Change 1: Building Change Mindsets and Reflective Competencies is a course for you who want to actively participate in the industrial and societal change towards sustainability. The course aims to develop your reflective competence, make you aware of the learning that exists in your experiences, and master your further personal development as a transformative agent and leader. The course is structured around six delimited assignments that are completed separately. The tasks are taken from an assignment bank where you choose which tasks you do and in what order. The course ends with a summarizing assignment where you capture what you have learned through the six assignments completed. All courses within the Leadership for Sustainable Change course package are designed to be flexible and assume that it may be difficult to leave work and come to campus at specific dates and times. As a student, you can therefore complete the course assignments in your own order and at your own pace using a digital platform. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Study effort: 80 hours
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Product development that efficiently contribute to reduction of material use and waste is key to successful transition towards sustainability. The aim of the course is to give the student a deeper understanding of product development for circular flows. Through this course, you will explore the critical relationship between sustainable practices and product development strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for product development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various practices in different types of product development work. The objective is for course participants to enhance their ability to understand and apply product development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours 40 hours distributed from week 10, 2025 to week 17, 2025. Webinar 1: March, 3rdWebinar 2: March, 25thWebinar 3: April, 7thWebinar 4: April, 21st Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024 and will also run spring 2026. This course: Product development for circular flow together with Business developmetent for circular flow (starting January 13) Product development for circular flows (starting April 28) are free standing independent courses that build on knowledge in the field.