Search

Luleå University of Technology

Luleå University of Technology experiences rapid growth with world-leading expertise within several research domains. Our research is carried out in close collaboration with companies such as Bosch, Ericsson, Scania, LKAB, SKF as well as with leading international universities and national and regional actors. Luleå University of Technology has a total turnover of SEK 1.9 billion per year. We currently have 1, 815 employees and 19, 155 students.

29 RESULTS

Edge computing in robotics

Edge computing enables faster and more energy-efficient data processing directly at the source. In robotics, this can lead to improved performance and sustainability. This course introduces the concept of edge computing and its applications in robotics. Course content • Fundamentals of edge computing• Applications of edge computing in robotics• Energy-efficient solutions for data processing What you will learn • Understand the principles of edge computing• Implement edge computing in robotic systems• Optimize data processing for energy efficiency Who is the course for?The course is designed for engineers, developers, and technicians working with robotics, IoT, and data processing who want to implement energy-efficient solutions in their projects. LanguageThe course is conducted in English. Additional informationThe course includes 15 hours of study and is offered for a fee.

Everything is material - material is everything

Materials are all around us, in your house, in your phone and in the air you breathe. But what is material and why is it so important? Right now, the green transition is underway, but how do we create a more sustainable world - from raw material to product? It's all about materials. How does material feel? How are materials chosen? What are the materials of the future? Join us and discover our world of materials! The course containsIn this course we go through the basics of what materials are and why they are so important. You get to discover materials, get to know materials and be inspired by the materials of the future. The following areas are included in the course: What is material? How does material feel? How are materials chosen? How are materials recycled? What are the materials of the future? You will learnAt the end of the course you should be able to: Discover and reflect on the world and meaning of materials Get a feel for different materials Discover and analyze materials in your vicinity Understand that different materials are chosen based on the area of use Understand and reflect on the possibilities of materials and their role in the green transition Who is the course for?This is a course suitable for EVERYONE who is curious about the materials in their surroundings, regardless of background and age. The course requires no prior knowledge. It is for those of you who have an interest in a sustainable future and who wonder what role materials have in the green transition. The course is given in Swedish.

Exploring sustainable production systems

Our society must shift to sustainable production. The production systems need to be developed in line with the global goals set by the UN and that have been agreed on by the countries. Sustainable production is about producing with, preferably, positive impact, but usually at least as little negative impact as possible, on people and our planet. This three-week course introduces you to sustainable production systems and helps you understand them from economic, social and ecological perspectives. The course begins with an exposé of how production systems have developed historically. You will learn about the UN Sustainable Development Goals. The course continues with an in-depth study of production systems, covering some prominent people and theories in the field. Next, you will learn about current developments in production innovation and Industry 4.0. You will also meet two companies in the manufacturing industry, Polarbröd and Sandvik Coromant, and see examples of how they work with sustainable production. The course concludes by giving you tools to design sustainable production systems. The course is aimed at anyone curious about sustainable production and how industrial production can be developed to become more sustainable. The course will be given in English.

Flow measurement for optimized energy use

Efficient energy use is a crucial part of sustainability efforts. Accurate flow measurement of liquids and gases can optimize energy consumption and streamline processes. This course teaches techniques and tools for implementing flow measurement in various applications. Course content Fundamentals of flow measurement technologyEnergy optimization through flow analysisPractical applications in industry and energy sectors What you will learn Use flow measurement to optimize energy consumptionEvaluate and implement measurement tools for different processesUnderstand how flow measurement impacts sustainability and energy efficiency Who is the course for? The course is designed for engineers, technicians, and production managers working with process optimization and energy efficiency in industrial settings. LanguageThe course is conducted in Swedish. Additional informationThe course includes 30 hours of study and is offered for a fee.

Fossil-free steel production

The steel industry is one of the largest sources of carbon dioxide emissions globally. With the introduction of fossil-free manufacturing processes, the industry can take significant steps toward a sustainable future. This course introduces the fundamentals of fossil-free steel production, focusing on techniques and processes to reduce climate impact. Course content Introduction to fossil-free steel production Use of hydrogen in steel manufacturing Climate impact and sustainability aspects What you will learn Understand the basics of fossil-free steel production Analyze the climate impact of traditional steel manufacturing Identify key factors for implementing fossil-free processes Who is the course for? The course is designed for engineers, technicians, and decision-makers in the steel and manufacturing industries. It is also suitable for researchers and students interested in understanding and working with fossil-free technology in steel production. Language The course is conducted in Swedish and English. Additional information The course includes 60 hours of study and is offered for a fee.

Fossil-free steel production II

Deepening knowledge of advanced techniques and processes for fossil-free steel production is essential for taking the next step toward a carbon-free industry. This course focuses on optimizing and implementing innovative solutions in the manufacturing process. Course Content Advanced techniques for fossil-free steel production Implementation of hydrogen-based processes Efficiency and optimization in steel manufacturing What You Will Learn Understand and apply advanced processes for fossil-free steel production Optimize manufacturing processes to reduce energy consumption Contribute to the transition toward a sustainable steel industry Who Is the Course For? The course is designed for professionals in the steel industry, researchers, and technical specialists with basic knowledge of fossil-free manufacturing who want to deepen their understanding of advanced techniques. Language The course is conducted in Swedish and English. Additional Information The course includes 60 hours of study and is offered for a fee.

Green freight transport – the transition of the Swedish freight transport system

Freight transport plays a crucial role in Sweden's economy but is also a major source of greenhouse gas emissions. To meet climate goals, the transport system must transition to greener alternatives, including electrification, biofuels, and hydrogen. This course provides an overview of technical solutions and strategies for reducing the environmental impact of the transport sector and supporting a sustainable transition. Course content• Electrification of freight transport• Use of biofuels and hydrogen• Infrastructure and policy challenges for green transport What you will learn• Identify key technologies for green freight transport• Analyze policy challenges and potential solutions• Develop strategies for implementing sustainable transport solutions Who is the course for?The course is designed for transport and logistics managers, engineers, policymakers, and other professionals seeking to understand the technical and policy aspects of green freight transport. It is also suitable for those working with sustainability strategies within the transport sector. LanguageThe course is conducted in Swedish. Additional informationThe course includes 80 hours of study and is offered for a fee.

Hydrogen for sustainable solutions: What is hydrogen and why is it important?

The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you. What will you learn?You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society? Who is the course for?The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up. Who are the teachers?Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.

Hydrometallurgical Extraction of Battery Metals from Primary Resources and End-of-Life Batteries

The global demand for battery metals is rapidly increasing, posing both environmental and economic challenges. Traditional metal extraction methods are resource-intensive and often have negative environmental impacts. Hydrometallurgical extraction offers a sustainable solution by using less energy and enabling the recovery of valuable metals from both primary and secondary resources. This course introduces participants to processes and techniques for optimizing the extraction of battery metals for a sustainable future. Course content • Basic principles of hydrometallurgical extraction• Techniques for recovering battery metals from end-of-life batteries• Environmental and sustainability aspects of metal extraction What you will learn • Understand the fundamentals of hydrometallurgical extraction and its role in sustainable metal recovery• Identify methods for recovering metals from various resources• Analyze sustainability challenges and implement solutions to minimize environmental impact Who is the course for? The course is designed for professionals in material recycling, the chemical and process industries, as well as researchers and engineers working with sustainable resource extraction. It is also suitable for those interested in learning the basics of metal extraction techniques for a sustainable future. LanguageThe course is offered in Swedish. Additional Information The course includes 40 hours of study and is offered for a fee.  

Introduction to Application of Robotic Tools

Gain essential practical skills in the application of robotics to understand how to use robotic tools across various industries. On this two-week course you’ll develop a working knowledge of the use of robotics, gaining essential practical skills for robotic applications. Delving into the fundamentals of robotics, you’ll be equipped with the basics of 3D modelling, object detection, computer vision, and image processing. You’ll discover examples and get hands-on experience in developing engaging and useful robotics applications. The skills you gain in this course will help you understand how to develop robotic tools in application across various sectors. Delve into object detection Gain practical skills in the application of robotics Learn from the experts at Luleå University of Technology This course is designed for anyone interested in learning how to develop robotic tools. It will be most beneficial for those who have some theoretical knowledge of robotics and want to gain more hands-on experience. This course will be given in English.

Introduction to Maintenance Engineering

Maintenance of company equipment, procedures, and budget has always been important to ensuring optimal business performance. However, it has moved on from the trial-and-error approach used in the beginning of the twentieth century. Modern maintenance engineering involves applying engineering principles to optimise company equipment, budget, and procedures. On this three-week course, Luleå University of Technology will introduce the science, management, and other principles you need to be a maintenance technician in the 21st century. Learn maintenance engineering and technology basics Understand and preserve reliability/maintenance balance Study with leading maintenance experts The course will be given in English.

Introduction to Tools for Robotics

Explore the different tools and software to design, test, and prototype custom robot parts and robust robot behaviour. In recent years, industries around the world have been getting creative when it comes to incorporating robotics into their workflows. This three-week course offers a fascinating introduction to software and tools currently used in robotics. You’ll build basic knowledge of robotics tools and learn how they can be adapted for different industries. Familiarise yourself with Ubuntu operating system and Gazebo framework Gain hands-on experience using 3D robotics models in simulation Learn from the experts at the cutting edge of control engineering, robotics, and AI This course is designed for anyone interested in using robotic solutions in their role and who wants to learn the basics of robotics frameworks. The course will be given in English.