Applications 2024-12-08
COURSE DESCRIPTION
The global demand for battery metals is rapidly increasing, posing both environmental and economic challenges. Traditional metal extraction methods are resource-intensive and often have negative environmental impacts. Hydrometallurgical extraction offers a sustainable solution by using less energy and enabling the recovery of valuable metals from both primary and secondary resources.
This course introduces participants to processes and techniques for optimizing the extraction of battery metals for a sustainable future.
Course content
• Basic principles of hydrometallurgical extraction
• Techniques for recovering battery metals from end-of-life batteries
• Environmental and sustainability aspects of metal extraction
What you will learn
• Understand the fundamentals of hydrometallurgical extraction and its role in sustainable metal recovery
• Identify methods for recovering metals from various resources
• Analyze sustainability challenges and implement solutions to minimize environmental impact
Who is the course for?
The course is designed for professionals in material recycling, the chemical and process industries, as well as researchers and engineers working with sustainable resource extraction. It is also suitable for those interested in learning the basics of metal extraction techniques for a sustainable future.
Language
The course is offered in Swedish.
Additional Information
The course includes 40 hours of study and is offered for a fee.
This course is taught in Swedish. For small and medium-sized businesses: learn how to develop a sustainable business and how to implement sustainability in your workplace. Do you want to learn how to use different methods to identify improvement potential for sustainability? Do you know how to smoothly integrate environmental improvement into your daily work? Do you want to learn tools to introduce new ways of working in your organisation and how to engage your employees? This practical course will give you knowledge on how to support your business to become more sustainable. Today we have less than seven years to meet the 1.5 degree target based on the carbon budget calculated by the UN Intergovernmental Panel on Climate Change. New technologies and new environmental investments are an important part of the societal transformation that is underway. It is equally important that we change the way we work and behave in our daily lives as well as in the workplace to reduce our environmental impact. Who can apply? The course is suitable for those in management positions who want to build and develop a sustainable business. For example, you may be a production manager, team leader, project manager, sustainability manager, environmental manager, or learning coordinator. Please note that the course is aimed at small and medium-sized businesses, with 10-249 employees, related to the automotive industry and the electrification transition. Course outline The course is structured around a running assignment and has four main themes: Identifying waste to avoid risk of harm to people and the environment. Use improvement methodology for environmental and resource efficiency improvements. Analyse and develop sustainable processes. Work on visions and goals for long-term sustainable development. See all courses that KTH Leancentrum offers
The Course Sustainable Tourism in the Baltic Sea Region aims to provide a basic but comprehensive knowledge and understanding of the origins, applications, analyses and examples of Sustainable Tourism with a specific regional focus on the Baltic Sea. The course has both an interdisciplinary and interregional focus and is designed to give the learner a broad but still focused introduction to the topic with socio-political, economic and environmental viewpoints. The topics that will be covered in this course include the introduction of sustainable tourism, its stakeholders, challenges and theories. Numerous examples will be given, including cases and specific aspects of the topic. The course is a regional cooperation between many researchers across the Baltic Sea Region, including those from Sweden, Finland, Ukraine and Poland. The course consists of four modules: -An introduction to Sustainable Tourism -Aspects of sustainable tourism -Sustainable spatial planning of tourism destinations -Examples from the field Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se
The course introduces you to the basics of the Baltic Sea, with its fragile and unique environment. Taking the course will help to better understand how human impacts are changing its marine ecosystems, but also how one can best reverse the negative trends of its destruction. Whether you take this course in your own pace, or within your university, we invite you to take part of the different lectures, and do the assignments for each topic. We hope you will learn something new about our beautiful semi-enclosed sea in Northern Europe. The course is built up with five chapters, each covering a new theme in several sections. Evolution, physical description and climateLife in the Baltic SeaPressures and challengesEnvironmental managementExamples from the region and future outlook The course takes approximately 50 hours to complete and if fully completed, students can request a digital certificate upon completing the course.
This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges. The students bring their own case study example as the background for a practical project, through which the student is also finally examined. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Online meetings (estimated): 14 Oct.: Introduction11 Nov.: Project Idea16 Dec.: Project Presentation Study hours: 80 This course is given by Örebro University.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage