Search

REEDEAM

REEDEAM is a project where Luleå University of Technology, Mälardalen University and Örebro University, and industry will co-produce education for the business community’s climate transition. The project aims to strengthen cooperation between universities and industry by improving access to demand-driven competence development. REEDEAM also aims to establish long-term cooperation between the universities based on their scientific areas of expertise. A planned research school will provide the business community with greater access to doctoral competence and further strengthen the universities’ cooperation with the surrounding industry and society. Lessons learned, and experiences from the KK Foundation’s expert competence program are integrated to ensure efficiency and quality by creating a cohesive competence offering.

Business development for circular flows

Business models that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. This course has a particular focus on the interplay between business models, product innovation and production processes. Through this course, you will explore the critical relationship between sustainable practices and business strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for business development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various business model practices in different types of development work. The objective is for course participants to enhance their ability to understand and apply business development processes in the manufacturing industry, and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are incuded. Study hours 40 hours distributed from week 47, 2024 to week 52, 2024. Webinar 1: November 18Webinar 2: December 3Webinar 3: December 16 The first webinar is November 18, but the course opens on November 11, which means that you by then reach the course material and can start your training. Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024. This course Business development for circular flow together with Product development for circular flows and Production for cirkular flows are free standing independent courses that build on knowledge in the field.

Cybersecurity for the Internet of Things (IoT)

The Internet of Things (IoT) is a networking paradigm which enables different devices (from thermostats to autonomous vehicles) to collect valuable information and exchange it with other devices using different communications protocols over the Internet. This technology allows to analyse and correlate heterogeneous sources of information, extract valuable insights, and enable better decision processes. Although the IoT has the potential to revolutionise a variety of industries, such as healthcare, agriculture, transportation, and manufacturing, IoT devices also introduce new cybersecurity risks and challenges. In this course, the students will obtain an in-depth understanding of the Internet of Things (IoT) and the associated cybersecurity challenges. The course covers the fundamentals of IoT and its applications, the communication protocols used in IoT systems, the cybersecurity threats to IoT, and the countermeasures that can be deployed. The course is split in four main modules, described as follows: Understand and illustrate the basic concepts of the IoT paradigm and its applications Discern benefits and drawback of the most common IoT communication protocols Identify the cybersecurity threats associated with IoT systems Know and select the appropriate cybersecurity countermeasures Course Plan Module 1: Introduction to IoT Definition and characteristics of IoT IoT architecture and components Applications of IoT Module 2: Communication Protocols for IoT Overview of communication protocols used in IoT MQTT, CoAP, and HTTP protocols Advantages and disadvantages of each protocol Module 3: Security Threats to IoT Overview of cybersecurity threats associated with IoT Understanding the risks associated with IoT Malware, DDoS, and phishing attacks Specific vulnerabilities in IoT devices and networks Module 4: Securing IoT Devices and Networks Overview of security measures for IoT systems Network segmentation, access control, and encryption Best practices for securing IoT devices and networks Organisation and Examination Study hours: 80 hours distributed over 6 weeks Scehduled online seminars:  February 6th 2025, from 13:15 to 16:00 February 26th 2025, from 13:15 to 16:00 March 12th 2025, from 13:15 to 16:00 Examination, one of the following: Analysis and presentation of relevant manuscripts in the literature Bring your own problem (BYOP) and solution. For example, analyse the cybersecurity of the IoT network of your company and propose improvements The number of participants in the course is limited, so please hurry with your application!

Large Language Models for Industry

The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Scheduled online seminars November 14th 2024, 15:00 - 17:00 December 12th 2024, 15:00 - 17:00 January 9th 2025, 14:00 - 17:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.