COURSE DESCRIPTION
The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se.
About the course Critical design and practical ethics for AI, 3 credits
Who is this course for?
Artificial Intelligence (AI) is being increasingly implemented and used in society today. It has already proven to have an impact on the individual, organization and society, and this impact will most likely only increase. Therefore, it is important to understand the ethical issues that may arise from use of AI, as well as to adopt a critical stance to the technology’s impact.
The course introduces critical and ethical issues surrounding data and society, to train the student to problematize and reason about artificial intelligence (AI).
You are most likely a designer, innovator, or product manager that works with digital services and products.
What will you learn from this course?
The course deals with different perspectives on AI and its real and potential effect on organizations and society. The course is based on five different perspectives on AI: accountability, surveillance capitalism, power and bias, sustainability, and trust.
The course material consists of recent and relevant literature on the impact of, and critical perspectives on AI. Active discussions founded in different ethical perspectives are also an important part of the course.
What is the format of this course?
This course is primarily self-paced, with a few synchronous meetings. Most activities are based on the student’s having consumed specified material beforehand, such as video lectures, podcasts, articles, and books. Active discussions, both in online forums and during synchronous meetings, are an important part of the course.
This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
The purpose is to give the students an overview of issues and methods for development and assurance of safety-critical software, including details of selected technologies, methods and tools. The course includes four modules: Introduction to functional safety; knowledge that give increased understanding of the relationship between Embedded systems / safety-critical system / accidents / complexity / development models (development lifecycle models) / certification / “the safety case”. Analysis and modelling methods; review of analysis and modelling techniques for the development of safety-critical systems. Verification and validation of safety critical software, methods and activities to perform verification and validation. Architectures for safety critical systems. Safety as a design constraint.
The aim of this course is that students will learn about the analysis, design, and programming of deep learning algorithms. The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Applied Deep Learning with PyTorch, 5 credits Who is this course for?This course provides the theoretical and practical aspects of deep neural networks. It is intended for students with a background in computer science and engineering. What will you learn from this course?Students will learn about the analysis, design, and programming of deep learning algorithms. The course has two modules: theory and practice. The theoretical content covers basic principles of multi-layer perceptions, spatio-temporal feature extraction with convolutional neural networks (CNNs), and recurrent neural networks (RNNs), classification and regression of big data, and generating novel data samples using generative models. The practical sessions cover the basics of programming with PyTorch. For instance, image classification and semantic segmentation using CNNs, future image frame prediction with RNNs, and image generation with generative adversarial networks. What is the format for this course?Instruction type: Teaching is in English and fully online. It consists of lectures, computer exercises, and project work. In the computer exercises, the student solves small problems using deep learning models. After programming various exercises, the participants will develop an advanced deep learning project. Participants will be encouraged to bring their own data. High-end GPU machines can be provided for the exercises and project.
The course consists of three parts that introduce and explore the design of extended realities along different axes: a framing perspective, illustrating what XR is, how it has evolved, and how designing XR differs from traditional digital design practices; a methodological perspective, detailing those XR-specific theory and methods that address XR design issues; and a practical perspective, exploring best practices and concrete design activities through direct application of these to a case. Each part consists of lectures, readings, supervision, and an assignment centered on the specific topics discussed in the part of the course.Assignments are carried out by students individually and will be peer-reviewed first and then discussed with the teachers and the class using a design critique approach.
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se