COURSE DESCRIPTION
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
Explore the different tools and software to design, test, and prototype custom robot parts and robust robot behaviour. In recent years, industries around the world have been getting creative when it comes to incorporating robotics into their workflows. This three-week course offers a fascinating introduction to software and tools currently used in robotics. You’ll build basic knowledge of robotics tools and learn how they can be adapted for different industries. Familiarise yourself with Ubuntu operating system and Gazebo framework Gain hands-on experience using 3D robotics models in simulation Learn from the experts at the cutting edge of control engineering, robotics, and AI This course is designed for anyone interested in using robotic solutions in their role and who wants to learn the basics of robotics frameworks. The course will be given in English.
The information and communication technology (ICT) sector is responsible for approx. 1.8-2.8% of the global greenhouse gas (GHG) emissions in 2020, and software is both part of the problems and the solutions. Traditional software engineering principles and techniques do not consider the climate, environment, and sustainability aspects in building and using software for any purpose. We, software engineers, developers, researchers, climate scientists, and various other related stakeholders, need to think about how we can reduce the carbon footprint due to building and using software-intensive systems. Green and sustainable software engineering is an emerging concept that can help reduce the carbon footprint related to software. In this introductory course, we will introduce the concept of green and sustainable software engineering and the engineering process to build green and sustainable software. Topics Sustainable and green computing Sustainable and green software engineering Process Energy efficient computing Sustainability issues in Scientific computing You will learnBy the end of the course, you will be able to: analyze the green and sustainability issues in traditional software engineering, identify and incorporate key elements to be included in the software engineering process to make the software green and sustainable, and use techniques to make your software code energy efficient. Who is the course for?This course is designed for those who are software developers, managers and software related policy makers, or have knowledge about software development, and want to consider the green and sustainability aspects in their everyday life. Also, this course will be useful for computational scientists who build green software and want to know more about these aspects in software engineering. However, this is an introductory course, and it will show a path for life-long learning to build more in-depth knowledge in each concept introduced in this course.
In this course, you will learn how data analysis in virtual production can improve your organization's results! Data analytics in virtual production uses advanced techniques to collect, analyze and present data to improve production. This system is designed to help companies optimize their production and increase efficiency. By learning how to model, do scenario analysis and evaluate using industrial software, identify bottlenecks, and use AI methods and applications, you will get all the tools necessary to succeed with a full production analysis. The course is given with flexible start and study pace, but we recommend a study pace of 20 %, which means that the course takes about 8 calendar weeks.
Learn how to improve industrial processes with modelling methods! Modeling is used to create a virtual representation of a real product. With the help of the model, you can study how the product works, test different options and evaluate the product before it is produced in reality. In this course, you gain knowledge on how to design and implement simulation models in the work of analyzing and improving production systems. You will learn how to plan and perform improvement studies, as well as apply the modeling process within the manufacturing industry. This is a course with a flexible start: The course is given with flexible start and study pace, but we recommend a study pace of 20%, which means that the course takes about 8 calendar weeks.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs