COURSE DESCRIPTION
The aim of this course is that students will learn about the analysis, design, and programming of deep learning algorithms. The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se.
About the course Applied Deep Learning with PyTorch, 5 credits
Who is this course for?
This course provides the theoretical and practical aspects of deep neural networks. It is intended for students with a background in computer science and engineering.
What will you learn from this course?
Students will learn about the analysis, design, and programming of deep learning algorithms. The course has two modules: theory and practice. The theoretical content covers basic principles of multi-layer perceptions, spatio-temporal feature extraction with convolutional neural networks (CNNs), and recurrent neural networks (RNNs), classification and regression of big data, and generating novel data samples using generative models. The practical sessions cover the basics of programming with PyTorch. For instance, image classification and semantic segmentation using CNNs, future image frame prediction with RNNs, and image generation with generative adversarial networks.
What is the format for this course?
Instruction type: Teaching is in English and fully online. It consists of lectures, computer exercises, and project work. In the computer exercises, the student solves small problems using deep learning models. After programming various exercises, the participants will develop an advanced deep learning project. Participants will be encouraged to bring their own data. High-end GPU machines can be provided for the exercises and project.
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Smart Healthcare with Applications, 4 credits Who is this course for?The course suits you with any Bachelor’s degree (equivalent of 180 Swedish credit points / ECTS credits at an accredited university) who have an interest in applying Artificial Intelligence (specifically Machine Learning) to healthcare. Leadership/management experience in health-related organization/industry OR a Bachelor degree in computer science is advantageous. What will you learn from this course?Healthcare as a sector together with other health-related sources of data (municipalities, home sensors, etc.), is now in a place and can take advantage of what data science, Artificial Intelligence (AI), and machine learning (ML) have to offer. Information-driven care has the potential to build smart solutions based on the collected health data in order to achieve a holistic fact-based picture of healthcare, from an individual to system perspective. This course aims to provide a general introduction to information-driven care, challenges, applications, and opportunities. Students will get introduced to artificial intelligence and machine learning in specific, as well as some use cases of information-driven care, and gain practice on how a real-world evidence project within information-driven care is investigated. What is the format for this course?Instruction type: The lectures, announcements, and assignments of this course will be fully online via a learning management system and presented in English. Each lecture is delivered through a video conference tool with a set of presentation slides displayed online during each class session. Online practical labs (pre-written Python notebooks) are also provided in the lectures.
The course is broken down into: Basic Bayesian concepts Selecting priors, deriving some equations Bayesian inference, Parametric model estimation Sampling based methods Sequential inference (Kalman filters, particle filters) Approximate inference, variational inference Model selection (missing data) Bayesian deep neural networks
How can we live a good life on one planet with over seven billion people? This course will explore greening the economy on four levels – individual, business, city, and nation. We will look at the relationships between these levels and give many practical examples of the complexities and solutions across the levels. Scandinavia, a pioneering place advancing sustainability and combating climate change, is a unique starting point for learning about greening the economy. We will learn from many initiatives attempted in Scandinavia since the 1970s, which are all potentially helpful and useful for other countries and contexts. The International Institute for Industrial Environmental Economics (IIIEE) at Lund University is an international centre of excellence on strategies for sustainable solutions. The IIIEE is ideally suited to understand and explain the interdisciplinary issues in green economies utilising the diverse disciplinary backgrounds of its international staff. The IIIEE has been researching and teaching on sustainability and greener economies since the 1990s and it has extensive international networks connecting with a variety of organizations.
WHat you will learn Increased knowledge on sustainable cities and communities. Deeper understanding of the relationship between urbanization, decarbonisation and sustainability. Improved critical thinking on the opportunities and challenges for sustainable cities and communities as engines for greening the economy. Expanded ability to use systems thinking to assess sustainable cities and communities. About this SpecializationIn this specialization you will learn how to drive change in cities and communities towards sustainable, climate friendly, just, healthy and prosperous futures, and you will boost your career with new knowledge, understanding and skills for navigating urban transformations. This specialisation brings together a series of cutting-edge courses with world-leading teachers on cities, communities, sustainability, governance and innovation. This specialization is offered by the IIIEE at Lund University and the City Futures Academy – an online learning community on urban transformations. Our flagship course, Greening the Economy: Sustainable Cities, is ranked in the Best Online Courses of All Time by Class Central. The ranking by Class Central contains 250 courses from 100 universities based on 170,000 reviews. Our specialisation builds on the success of the Greening the Economy: Sustainable Cities course. A key approach embedded in the courses in this specialisation is the role of experimentation in urban transformations. In particular, urban living labs are highlighted as a means for catalysing change in cities and communities towards sustainable, climate friendly, just, healthy and prosperous futures. The experimentation within urban living labs offers the potential for accelerating transformations and systematic learning across urban and national contexts. Applied Learning Project Learners are introduced to key facts and insights about sustainable cities and communities as engines for greening the economy, then tasked with developing this understanding through readings and practice exercises that highlight the role of urban living labs in creating sustainable cities and communities. Specifically, you will learn: how to work with greening the economy through cities and communities; how to design and implement urban living labs for accelerating change in cities and communities; how to build resilience and create a host of benefits from nature-based solutions in cities and communities; and how to influence consumption patterns in cities and communities through sharing practices . Further documentaries and quizzes will provide you with critical thinking and a broader and deeper perspective that are essential to understanding and creating sustainable cities and communities.
The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Scheduled online seminars November 14th 2024, 15:00 - 17:00 December 12th 2024, 15:00 - 17:00 January 9th 2025, 14:00 - 17:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.