COURSE DESCRIPTION
The information and communication technology (ICT) sector is responsible for approx. 1.8-2.8% of the global greenhouse gas (GHG) emissions in 2020, and software is both part of the problems and the solutions. Traditional software engineering principles and techniques do not consider the climate, environment, and sustainability aspects in building and using software for any purpose. We, software engineers, developers, researchers, climate scientists, and various other related stakeholders, need to think about how we can reduce the carbon footprint due to building and using software-intensive systems.
Green and sustainable software engineering is an emerging concept that can help reduce the carbon footprint related to software. In this introductory course, we will introduce the concept of green and sustainable software engineering and the engineering process to build green and sustainable software.
Topics
You will learn
By the end of the course, you will be able to: analyze the green and sustainability issues in traditional software engineering, identify and incorporate key elements to be included in the software engineering process to make the software green and sustainable, and use techniques to make your software code energy efficient.
Who is the course for?
This course is designed for those who are software developers, managers and software related policy makers, or have knowledge about software development, and want to consider the green and sustainability aspects in their everyday life. Also, this course will be useful for computational scientists who build green software and want to know more about these aspects in software engineering. However, this is an introductory course, and it will show a path for life-long learning to build more in-depth knowledge in each concept introduced in this course.
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
Explore the different tools and software to design, test, and prototype custom robot parts and robust robot behaviour. In recent years, industries around the world have been getting creative when it comes to incorporating robotics into their workflows. This three-week course offers a fascinating introduction to software and tools currently used in robotics. You’ll build basic knowledge of robotics tools and learn how they can be adapted for different industries. Familiarise yourself with Ubuntu operating system and Gazebo framework Gain hands-on experience using 3D robotics models in simulation Learn from the experts at the cutting edge of control engineering, robotics, and AI This course is designed for anyone interested in using robotic solutions in their role and who wants to learn the basics of robotics frameworks. The course will be given in English.
Big data and the algorithms used in data science, together with the corresponding process and its technology tools, have important implications for addressing climate change. From machine learning algorithms to data visualization, data science methods are used to investigate and better understand climate change and its various effects on land, sea, food, etc.Data science is a powerful approach which is capable of helping practitioners, and policy-makers understand the uncertainties and ambiguities inherent in data, to identify interventions, strategies, and solutions that realize the benefits for humanity and the environment, and to evaluate the multiple– and sometimes conflicting–goals of decision-makers. In this MOOC course, we introduce methods pertaining to the growing field of data science and apply them to issues relevant to climate change. Topics Data science Analytics as a process Data-driven decisions Climate change Applications of data science in climate change Course content Understand data science Learn about the sources of big data Understand the basics of climate change, its impacts and sustainable development goals Get to know data-driven decisions and how they are made Highlight some climate change challenges that are directly or indirectly related to data science Apply data science knowledge and skills to make climate change related decisions Learn how others have used data science in association with addressing climate change problems You will learnBy the end of the course, you will be able to: obtain and analyze datasets; make data-driven decisions; identify and address climate change challenges using data science Who is the course for?This course is designed for those who want to improve their analytics and data-driven decision-making skills, with an emphasis on utilizing such skills for addressing climate change challenges. The course will also be useful for practitioners and policy-makers as they can benefit from understanding the uncertainties and ambiguities inherent in data and using it to identify interventions, strategies, and solutions that realize benefits for humanity and the environment.
Hydrogen is a clean fuel, a versatile energy carrier, and seems to be the answer to the climate change challenge. Why is everyone talking about it, and how is it going to replace traditional fuels? This modularized course provides a comprehensive overview on hydrogen as an energy carrier, with focus on fuel cell as hydrogen conversion technology. Hydrogen production and storage and their role in decarbonization will be covered. Different fuel cell technologies will be analyzed and discussed to present benefits and challenges in the use of hydrogen for power production, urban mobility, aviation, transportation, residential sector and much more. The learners will be able to combine the available modules to create their personalized education based on their needs and get insights on where and when hydrogen can play a role in a carbon-free society.
UMA TALKS CLIMATE CHANGE 2022 Climate Adaptation of the Built Environment DESIGNING CYCLES AT 64° Interior Urban Landscapes and the Water-Energy Food Nexus Climate change demands a recalibration of our built environment to become more resilient. Designing Cycles at 64° takes a multi-scalar approach addressing individual building typologies and, exemplarily for climate adaptation of northern climate zones, the city of Umeå with its diverse urban fabric as a whole. The active involvement of all stakeholders in the planning and future use of buildings and open spaces becomes key. How to create spaces that contribute to community building and social interaction while integrating a maximum of ecosystemic services is therefore a central question that demands for implementable methods, tools, processes and design solutions. At 64° latitude, interior landscapes and the water-energy-food nexus offer interesting possibilities to extend growing seasons and diversify crops, to reduce energy consumption while providing hybrid living spaces between inside and outside. By exploring greenhouse extensions and building envelopes as local passive architectural solutions, DC64° sets out to build productive interfaces between the private and public sector, academia involving the disciplines of architecture and urban planning, urban water management, plant physiology and vertical gardening, as well as the general public in a living lab format. Retrofitting the existing building stock, repurposing vacancies and expanding our building performance may accumulatively have a systemic impact both in terms of reducing water and energy consumption, as well as food miles, while buffering existing infrastructure networks and enabling local food production on site. Expanding on Bengt Warne’s Naturhus (1974) and following examples, we anticipate new multifunctional architectural models applicable in various contexts and scales. FORMAT / The program includes an introductory lecture that addresses climate urgencies and potential capacity for change in the context of the built environment the week before the one-day symposium (hybrid format). The symposium brings together practitioners, researchers and educators and consists of five thematic sessions that can be attended as a full day or individually as they are interrelated, yet also function independently (See program link below). INTENDED LEARNING OUTCOMES / Understanding of multi-scalar climate-adapation design approaches within the built environment with a focus on the Nordic context / Reflect on aspects of social sustainability when it comes to transforming buildings and inhabitants from being consumers to becoming producers / Umeå University School of Architecture Presentations Program Nov. 30. For any questions content-related questions please email us cornelia.redeker@umu.se sara.thor@umu.se constanze.hirt@umu.se