COURSE DESCRIPTION
This course provides a glimpse into the world of batteries. We all use batteries every day, but do you really know how a battery works, what’s inside it, what it’s useful for, and how scientists are trying to improve them for the future? In this introductory course, we will tell you everything from battery basics, through the development of the lithium-ion battery, their applications and requirements, what kinds of materials are used to build batteries, to what happens to a battery when it’s finished its life and how batteries are being developed for the future. As a participant in this course, you ideally have some form of technical background, probably studied sciences at college or even in higher education, or have experience in a technical profession. It is hoped that after the course you will be much more aware of the battery world, the requirements, applications and components of a battery, as well as having a wider perspective of how this important technology will develop over the coming decade. It is expected that this course should take about 10-15 hours in total to complete.
The course is available from 30th of December 2022.
FÖR VEM Vindkraftskurs.se riktar sig till handläggare i kommuner och länsstyrelser samt till alla som vill lära mer om vindkraft. VAD OCH VARFÖR Syftet med kursen är att öka kunskapen om vindkraft och specifikt om frågeställningar som är aktuella vid tillståndsärenden. NÄR OCH HUR Du väljer själv när samt i vilken takt du vill genomföra momenten. Samtliga delar av kursen är avgiftsfria. Vindkraftskurs.se är uppbyggd av fyra moduler: 1. Vindkraftens förutsättningar 2. Miljöpåverkan 3. Prövning och tillsyn 4. Idébank & lokal nytta Inne i modulerna finns både sökfunktion och kursöversikt, så att du lätt kan orientera dig genom kursens innehåll. Att gå igenom hela kursen tar ca 3–5 dagar beroende på hur intensivt/extensivt du läser. Du kan även välja att läsa delar av kursen.
Society is transitioning from oil dependency to metal dependency as we are turning to fossil-free alternatives in the energy and transport sectors. Today, many more metals in the periodic table are used in our daily lives compared to only a few decades ago and many metals that previously had marginal applications are today central to achieving the climate goals. But where do these metals come from and how are they linked to geology?In this course, you will explore the basics of geology and understand how geology controls where critical metals are in the earth’s crust. You will gain insight into what it takes to mine an ore body and broaden your perspective on what risks and challenges we are facing when it comes to the raw material supply that drives the fossil-free energy transition. This course covers the role of ore geology in the transition to fossil-free energy and transport systems, which means that we are moving from oil dependency to metal dependency. Geological processes throughout the earth’s history are responsible for the current distribution of ore deposits. By understanding how these ore forming processes work, we can better explain why certain metals occur in extractable amounts in one place while being almost absent in another. To meet the global demand of metals needed in, for example, solar panels, wind turbines, and batteries, a thorough understanding of how geological processes work is fundamental. In this course, you will be introduced to the fantastic world of the subsurface that made all the technology you take for granted possible. You will explore: What critical metals are, where they are produced today, and what risks and challenges are involved in the supply of raw materials that drives the fossil-free energy transition. Basic geology – minerals, rock types, geological structures and why they matter. What an ore is and the natural processes that accumulate metals in the earth’s crust. This course is designed for people that would like to gain knowledge about the role of geology in the transition to fossil-free energy systems. The course is for those who want to know more about what critical metals are, how an ore is formed, and about risks and challenges coupled to the supply of raw materials that drive the energy transition. This may include politicians and other authorities, teachers and students in elementary and high school that want to know more about subjects critical to the energy transition. It may also include university students within the social sciences, and many more. The course will also be useful for anyone who is employed and wishes to upskill within the area of societal challenges coupled to the supply of raw materials and the need for metals in modern society. The course will be given in english.
Hydrogen is a clean fuel, a versatile energy carrier, and seems to be the answer to the climate change challenge. Why is everyone talking about it, and how is it going to replace traditional fuels? This modularized course provides a comprehensive overview on hydrogen as an energy carrier, with focus on fuel cell as hydrogen conversion technology. Hydrogen production and storage and their role in decarbonization will be covered. Different fuel cell technologies will be analyzed and discussed to present benefits and challenges in the use of hydrogen for power production, urban mobility, aviation, transportation, residential sector and much more. The learners will be able to combine the available modules to create their personalized education based on their needs and get insights on where and when hydrogen can play a role in a carbon-free society.
This course is offered on-demand, meaning that it will begin as soon as at least 10 participants have registered. Once the threshold is reached, the course will start shortly thereafter. Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Study effort: 80 hours
Opens in May 2025. The Swedish version of the course, namely ”Varför välja trä vid nästa byggprojekt?” is already open. For more iformation contact course coordinator dimitris.athanassiadis@slu.seCourse DescriptionDifferent types of biomaterials (e.g., wood) are crucial in the challenge of decarbonizing the built environment and reducing the carbon footprint of buildings and infrastructure by replacing materials like steel and cement, which have high carbon dioxide emissions. At the same time, we must not forget that it is important to preserve biodiversity and the social values of our forests. The 13 modules of the course cover many forestry related subjects, including harvesting methods, biodiversity, forest management, logistics, the role of forests in the climate transition, carbon storage, environmental benefits of multi-story buildings with wood, and more. The goal is that participants will gain a shared understanding of Swedish forestry so that they can make well-informed decisions about material choices for their next construction project. Course PeriodThe course will be active for 3 years. Content Forest history: The utilization of forests in Sweden throughout the past years Forestry methods and forest management Forest regeneration Wood properties Forest mensuration Forest tree breeding The forest's carbon balance Business models and market development: Focus on wood high rises Nature conservation and biodiversity in the forest Course StructureThe course is fully digital with pre-recorded lectures. You can participate in the course at your own pace. Modules conclude with quizzes where you can test how much you have learned. You will learn aboutUpon completion of the course, you will have learned more about various forest-related concepts, acquired knowledge of forest utilization in Sweden throughout the past years, increased your understanding of forest management and how different management methods affect biodiversity in the forest, and learned about the forestry cycle—from regeneration to final harvesting, etc. Who is this course for?This course is designed for professionals such as architects, municipal employees working with urban planning and construction, individuals in the construction and civil engineering sector, and those in other related fields. This is an introductory course and will contribute to upskilling of the entire construction sector, thereby increasing the industry's international competitiveness while also providing important prerequisites for the development of future sustainable, beautiful, and inclusive cities. Since the course is open to everyone, we hope that more groups, such as students, doctoral candidates, forest owners, and others with an interest in forestry, will take the course and engage with inspiring lectures where scientific knowledge primarily produced within SLU (Swedish University of Agricultural Sciences) is presented.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. You may join the course from March 17 until the middle of April, 2025. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours