COURSE DESCRIPTION
This course is taught in Swedish.
This course is an extension to the course Introduction to materials in a circular society. The course gives you basic insights into the circular economy and the recycling of metals. You will also gain an understanding of the recycling of the most common metals and their role in a sustainable society in a circular economy. During the course we will review:
The course is completely free of charge, taught online with no scheduled sessions, and can be followed at your own pace. You can take the course without subject-specific prior knowledge.
The course consists of five parts:
You will be examined continuously by answering questions related to each part. The examination is based on questions that are automatically corrected. To pass, you must answer all questions correctly. There is no limit to the number of times you can answer the questions.
After passing the course you will have learned to:
Other courses about the circular economy:
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.
This course provides a fundamental knowledge of IoT, targeting physical devices, communication and computation infrastructure. The course gives theoretical knowledge as well as hands-on experiences to build an IoT application.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.
This course makes you acquainted with the concept of systems-of-systems (SoS), which means that independent systems are collaborating. It gives you an understanding why SoS is an important topic in the current digitalisation and provides a theoretical and practical foundation for understanding important characteristics of SoS. It also gives you a deeper knowledge in a number of key concerns that need to be considered when engineering SoS. This is a course with a flexible start: If you are admitted, you may join the course any time between the course start in September 2025 until the beginning of October. With the recommended study pace of 25%, the course will take approximately seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than the end of the autumn semester.