COURSE DESCRIPTION
This course provides an understanding of the fundamental problems in software testing, as well as solid foundation in the practical methods and tools for a systematic state-of-the-art approach to testing of software.
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
The aim of this course is to provide participants with the principles behind model-driven development of software systems and the application of such a methodology in practice. Modelling is an effective solution to reduce problem complexity and, as a consequence, to enhance time-to-market and properties of the final product.
The purpose is to give the students an overview of issues and methods for development and assurance of safety-critical software, including details of selected technologies, methods and tools. The course includes four modules: Introduction to functional safety; knowledge that give increased understanding of the relationship between Embedded systems / safety-critical system / accidents / complexity / development models (development lifecycle models) / certification / “the safety case”. Analysis and modelling methods; review of analysis and modelling techniques for the development of safety-critical systems. Verification and validation of safety critical software, methods and activities to perform verification and validation. Architectures for safety critical systems. Safety as a design constraint.
The aim of this course is to give students insight about certification and about what it means to certify/self-assess safety- critical systems with focus on software system and to create a safety case, including a multi-concern perspective when needed and reuse opportunities, when appropriate.
This course is offered on-demand, meaning that it will begin as soon as at least 10 participants have registered. Once the threshold is reached, the course will start shortly thereafter. Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Study effort: 80 hours