COURSE DESCRIPTION
Den här kursen ger en inblick i batteriernas värld. Vi använder alla batterier varje dag, men vet du verkligen hur ett batteri fungerar, vad som finns i det, vad det är användbart för och hur forskare försöker förbättra dem för framtiden?
I den här introduktionskursen kommer vi att berätta allt från batterigrunderna, till utvecklingen av litiumjonbatteriet, deras tillämpningar och krav, vilka typer av material som används för att bygga batterier, till vad som händer med ett batteri när det är slut. och hur batterier utvecklas för framtiden.
Som deltagare i denna kurs har du helst någon form av teknisk bakgrund, troligen läst naturvetenskap på högskola eller till och med på högre utbildning, eller har erfarenhet av ett tekniskt yrke. Förhoppningen är att du efter kursen ska bli mycket mer medveten om batterivärlden, kraven, applikationerna och komponenterna i ett batteri, samt ett bredare perspektiv på hur denna viktiga teknik kommer att utvecklas under det kommande decenniet.
Observera att videoinspelningarna i denna kurs är på engelska men är textade på svenska.
FÖR VEM Vindkraftskurs.se riktar sig till handläggare i kommuner och länsstyrelser samt till alla som vill lära mer om vindkraft. VAD OCH VARFÖR Syftet med kursen är att öka kunskapen om vindkraft och specifikt om frågeställningar som är aktuella vid tillståndsärenden. NÄR OCH HUR Du väljer själv när samt i vilken takt du vill genomföra momenten. Samtliga delar av kursen är avgiftsfria. Vindkraftskurs.se är uppbyggd av fyra moduler: 1. Vindkraftens förutsättningar 2. Miljöpåverkan 3. Prövning och tillsyn 4. Idébank & lokal nytta Inne i modulerna finns både sökfunktion och kursöversikt, så att du lätt kan orientera dig genom kursens innehåll. Att gå igenom hela kursen tar ca 3–5 dagar beroende på hur intensivt/extensivt du läser. Du kan även välja att läsa delar av kursen.
Society is transitioning from oil dependency to metal dependency as we are turning to fossil-free alternatives in the energy and transport sectors. Today, many more metals in the periodic table are used in our daily lives compared to only a few decades ago and many metals that previously had marginal applications are today central to achieving the climate goals. But where do these metals come from and how are they linked to geology?In this course, you will explore the basics of geology and understand how geology controls where critical metals are in the earth’s crust. You will gain insight into what it takes to mine an ore body and broaden your perspective on what risks and challenges we are facing when it comes to the raw material supply that drives the fossil-free energy transition. This course covers the role of ore geology in the transition to fossil-free energy and transport systems, which means that we are moving from oil dependency to metal dependency. Geological processes throughout the earth’s history are responsible for the current distribution of ore deposits. By understanding how these ore forming processes work, we can better explain why certain metals occur in extractable amounts in one place while being almost absent in another. To meet the global demand of metals needed in, for example, solar panels, wind turbines, and batteries, a thorough understanding of how geological processes work is fundamental. In this course, you will be introduced to the fantastic world of the subsurface that made all the technology you take for granted possible. You will explore: What critical metals are, where they are produced today, and what risks and challenges are involved in the supply of raw materials that drives the fossil-free energy transition. Basic geology – minerals, rock types, geological structures and why they matter. What an ore is and the natural processes that accumulate metals in the earth’s crust. This course is designed for people that would like to gain knowledge about the role of geology in the transition to fossil-free energy systems. The course is for those who want to know more about what critical metals are, how an ore is formed, and about risks and challenges coupled to the supply of raw materials that drive the energy transition. This may include politicians and other authorities, teachers and students in elementary and high school that want to know more about subjects critical to the energy transition. It may also include university students within the social sciences, and many more. The course will also be useful for anyone who is employed and wishes to upskill within the area of societal challenges coupled to the supply of raw materials and the need for metals in modern society. The course will be given in english.
Hydrogen is a clean fuel, a versatile energy carrier, and seems to be the answer to the climate change challenge. Why is everyone talking about it, and how is it going to replace traditional fuels? This modularized course provides a comprehensive overview on hydrogen as an energy carrier, with focus on fuel cell as hydrogen conversion technology. Hydrogen production and storage and their role in decarbonization will be covered. Different fuel cell technologies will be analyzed and discussed to present benefits and challenges in the use of hydrogen for power production, urban mobility, aviation, transportation, residential sector and much more. The learners will be able to combine the available modules to create their personalized education based on their needs and get insights on where and when hydrogen can play a role in a carbon-free society.
The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Scheduled online seminars November 14th 2024, 15:00 - 17:00 December 12th 2024, 15:00 - 17:00 January 9th 2025, 14:00 - 17:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
This course is designed for you who wants to learn more about functional safety of battery management systems. The course will also cover other aspects of safety such as fire safety in relation to Rechargeable Energy Storage Systems (RESS) and associated battery management systems. In the course you will be able to develop skills in principles of Battery Management Systems, Functional Safety as well as of other aspects of safety such as Fire Safety, hazard identification, hazard analysis and risk assessment in relation to battery management systems. It also aims to provide a broader understanding of the multifaceted nature of safety. The course takes about 80 hours to complete and you can do it at your own pace. There are two scheduled meetings: One after five weeks to resolve any queries and another at the end of the course for the course evaluation. The date and time will be provided within a week of starting of course. Target GroupThis course is primarily intended for engineers that need to ensure that battery management systems are safe, reliable, and compliant with industry standards. The course is suitable for individuals with backgrounds in for example functional safety, battery systems, automotive or risk assessment. Entry requirements120 university credits of which at least 7.5 credits in software engineering and 7.5 credits in safety-critical systems engineering or 60 university credits in engineering/technology and at least 2 years of full-time professional experience from a relevant area within industry or working life experience regarding application of functional safety standards in the automotive domain or in other domains. The experience could be validated via a recommendation letter of a manager stating the involvement of the student in the development of functional safety artefacts. Proficiency in English is also required, equivalent to English Level 6.
This course has flexibel start and you may join between October 21 and November 17, 2024 This course is designed for engineers, scientists, operators, and managers interested in utilizing AI-based methods for condition monitoring and prognostics in industrial systems and high-value assets. Participants will learn to identify common failure causes and predict Remaining Useful Life (RUL) using historical data, involving tasks such as data processing, feature selection, model development, and uncertainty quantification. Led by experienced professionals from industry and academia, the course covers the basics of prognostics and introduces various AI methods, including deep learning. It represents state-of-the-art AI-driven prognostic techniques, advanced signal processing, and feature engineering methods. You may join the course any time between October 21 and November 17, 2024. With the recommended study pace of 25%, the course would take approximately seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than January 15, 2025. Scheduled online meetings November 11th 2024 January 15th 2025