Applications 2025-06-02 - 2025-11-09
COURSE DESCRIPTION
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life.
Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications.
Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints.
Course content
You will learn to:
Target group:
Would you like to know what smart production is about? Then this is a course for you! In the course, we look at enabling technologies within advanced and smart production systems from an industrial perspective. We will cover how recent advancements in technologies such as 3D printing, computer vision, IoT, AI and robotics can be leveraged in designing new and better production flows. Focusing on how advanced production systems can be set up to allow for greater flexibility in production, both in terms of handling different unit variants and production volumes. There will also be an opportunity in the individual projects to deep dive into how these technologies could fit into your company’s needs, focusing on both the potential benefits and challenges these technologies would entail. The course covers many topics, and you will learn the basic terminology related to discrete and rapid production, connected factories and automation in assembly. You will get insight and understanding of industrial competitiveness and how it affects industry and individuals. The course work will consist of three online seminars, a project report and independent work. Examples of professional roles that will benefit from this course are manufacturing engineers, production managers and automation engineers. This course is given by Mälardalen university in cooperation with Luleå University of Technology.
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Digital seminars The course includes five scheduled digital seminars. The seminars will be recorded to provide flexibility in completing the course, although we highly recommend to participate in the seminars if possible. November 4, 9:15 - 12:00 November 11, 9:15 - 12:00 November 25, 9:15 - 12:00 December 2, 9:15 - 12:00 December 16, 9:15 - 12:00 Study effort: 80 hrs
Do you want to deepen your understanding of hydrogen gas behavior in various scenarios—and at the same time strengthen your role in the green transition? This course provides knowledge of both controlled and uncontrolled reactions in hydrogen systems, with a focus on safety, efficiency, and practical application. The course content is: · Unignited releasesExpanded and under-expanded jets · Ignition of hydrogen mixturesPiloted and spontaneous ignition · Deflagrations and detonationsVented and non-vented deflagrationsVented and non-vented detonationsDDT, deflagration to detonation transition · Jet flamesFroude-based correlationsBlow-off phenomenonJet flame characteristics Study hours40 hours distributed over 5 weeks SeminarsNovember, 14th at 11:00-12:30November, 28th at 11:00-12:30December, 12th at 11:00-12:30 Dates and times can be discussed online among participants once the course starts. It is ok to eat lunch during the seminars. Target groupThis course is aimed at professionals working in or entering fields related to safety of hydrogen handling and hydrogen infrastructure. Specifically, it is relevant for engineers and technical professionals in all fields where hydrogen is used. Entry requirementsBachelor's degree of at least 180 ECTS, or equivalent, which includes courses of at least 60 ECTS in engineering and/or natural sciences. Alternatively other courses and practical experience. The latter can be validated through an interview or written test. ExaminationIn order to pass the course the student must:- Attend the three compulsory online meetings.- Write an essay which is reviewed by other students and approved by the teacher.- Pass four compulsory quizzes. Education providerLuleå University of TechnologyTeacher: Michael Först
Learn the fundamentals of electromobility in this flexible, teacher-led online course designed for engineers and professionals who want to build a solid understanding of electromobility. Learning Electromobility is a live, teacher-led online course developed by the Swedish Electromobility Centre in collaboration with five leading Swedish universities. Designed for engineers and professionals in the transport and energy sectors, the course supports lifelong learning by offering in-depth knowledge of the technologies and systems that underpin the transition to electric mobility. Spanning ten weeks and divided into five specialised modules, the course covers both personal electric vehicles and electric trucks, ensuring a broad and practical understanding of the entire electromobility ecosystem. You can choose which modules to attend, allowing for a tailored learning experience based on your interests and professional needs. Each module includes preparatory materials, three interactive teaching sessions, and assignments that reinforce learning through real-world applications. When you have completed a module, you will receive a certificate indicating your achievments. The course is administered by Linköping University, which provides the learning platform used in the course. Content The course is divided into five modules, each focusing on a specific aspect of electromobility. Below is a brief overview of the modules: Module 1: EV Energy Management and ControlUnderstand how energy is consumed and managed in electric vehicles. Learn modeling, simulation, and control strategies like Equivalent Consumption Minimization Strategy and dynamic programming. Module 2: Electric Drives and ChargingExplore electric motors, power electronics, and charging systems. Includes design studies and simulation tools for powertrains and infrastructure. Module 3: EV Energy StorageDive into batteries and fuel cells, from electrochemistry to integration and safety. Covers Li-ion, Na-ion, and next-gen storage technologies. Module 4: EV SustainabilityExamine the environmental and societal impacts of EVs. Topics include life cycle analysis, battery recycling, how logistics systems need to be adapted, and how adjusted business models can be made to fit with electrification. Module 5: EV Charging Infrastructure and Grid InteractionLearn about the Swedish power system, smart charging, V2G, and how EVs interact with the grid. Includes economic and regulatory perspectives. Course structure Choose from 5 independent modules, 2 weeks each. There are 3 live sessions per module, 120 minutes each. Each module will have the following timeslots for the session: Monday and Thursday module week 1, Wednesday module week 2. Each session will be between 13:00-15:00, except the very first session that will be between 13:00-16:00, since it includes an introduction to the course. You will learn General learning outcomes for the course: Explain the key technologies and principles underlying electric vehicles, including energy storage, electric drives, and vehicle energy management. Analyze the technical, economic, and environmental impacts of electric vehicle systems across their lifecycle, including integration with the power grid. Evaluate solutions for sustainable electromobility by applying systems thinking to vehicle design, energy usage, charging infrastructure, and societal adaptation. Who is this course for? This course is designed for professionals in the engineering and technology sectors. This course is developed jointly by Chalmers University of Technology, KTH, Linköping University, Lund university and Uppsala University.
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se