COURSE DESCRIPTION
Den här kursen ger dig som arbetar inom medicinteknik de nödvändiga kunskaperna för att utveckla och hantera säkra och hållbara digitala system inom vården. Kursen ger dig kunskap om hur digitala system och vårdstöd ska utformas för att säkerställa att säkerhetskrav för patient och sjukhuspersonal uppfylls. Du lär dig att analysera och sammanställa risker och fördelar med olika typer av medicintekniska system samt värdera teknik utifrån hållbar vård och digitalisering.
Medicinteknisk utrustning omgärdas av en speciell lagstiftning för att säkerställa hög patient- och användarsäkerhet. Dagens medicintekniska produkter är också ofta kopplade till sjukhusens datorjournalsystem, något som gör att de sammantagna systemen i många fall blir svåra att överblicka och kontrollera. För företag och ingenjörer ställer detta sammantaget stora krav på kunskap kring hantering av risker vid utveckling och handhavande av medicintekniska system.
Kursen ges på distans och är lärarledd med föreläsningar. I kursen ingår ett mindre projekt som utförs under handledning på den egna arbetsplatsen. Kursen har 25% studietakt, och arbetstiden du behöver lägga ner motsvarar cirka 7 arbetsdagar.
Efter avklarad kurs har du en ökad kunskap om säkerhetsaspekter kopplade till medicinsk teknik. Du har även kunskap om säkerhet, lagar och bestämmelser för medicinteknisk utrustning.
Kursen riktar sig till medicintekniska ingenjörer eller andra yrkesgrupper verksamma på sjukhuset eller inom sjukvården.
This course provides an introduction into network security and covers core security concepts such as, e.g., firewalls, authentication, certificate management, encryption, "stateful packet inspection", VPN and others. During the course you are provided with slide and video materials as well as a set of practical assignments and thus gain both theoretical and practical knowledge and skills needed for the installation, troubleshooting, and monitoring of network devices to maintain the integrity, confidentiality, and availability of data and devices.
You will learn how to assess industrial Augmented Reality threats, their potential impact on the facilities and employees, and how to mitigate these threats. The course will also provide opportunities to apply new knowledge in use-cases of industrial relevance.
This course introduces the concept of secure architecture which implies mitigation of potential confidentiality, integrity, and availability (CIA triad) threats by incorporating security elements such as demilitarized zone (DMZ), Anti-DDoS, load balancing, logging-monitoring-alerting (LMA), and incident response domain as well as by using corresponding security practices at the design stage that include but not limited to analysis of attack surface, threat modeling (STRIDE), and risk assessment (CVSS and OWASP Risk Rating Methodology). The design of secure cloud-based architectures is the primary focus of the course in light of premise-to-cloud migration.
Business models that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. This course has a particular focus on the interplay between business models, product innovation and production processes. Through this course, you will explore the critical relationship between sustainable practices and business strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives In this course, you will be introduced to systematic working methods for business development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various business model practices in different types of development work. The objective is for course participants to enhance their ability to understand and apply business development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours 40 hours distributed from week 3, 2025 to week 8, 2025. Webinar 1: January 13thWebinar 2: January 20thWebinar 3: February 3rdWebinar 4: February 17th Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024 and will also run spring 2026. This course: Business development for circular flow together with Product development for circular flows (starting March 3) and Production for cirkular flows (starting April 28) are free standing independent courses that build on knowledge in the field.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. Participants will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. Participants will gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, the student shall be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars March 23rd 2025 at 8:30 - 10:30 (course start) April 29th 2025 at 10:00 - 11:30 (online seminar) June 3rd 2025 at 9:00 - 12:00 (project presentations and course ending) Study effort: 80 hours