Applications 2025-05-01 - 2025-12-19
COURSE DESCRIPTION
Digital säkerhet, cybersäkerhet, är en nödvändighet för en fungerande samhällskritisk infrastruktur, såsom elsystem, vattenrening, trafik och sjukvård. Detta blir speciellt tydligt då vi går mot en grön omställning av vårt samhälle, då just samhällskritiska funktioner måste fungera och digitalisering av samhällskritiska funktioner ökar, för att vi ska kunna effektivisera olika verksamheter. Och med det följer att cybersäkra lösningar är ett måste, så att samhället och dess medborgare inte drabbas av digitala intrång.
I denna kurs kommer exempel tas upp från olika samhällskritiska funktioner, med fokus på elsystemet. Digitala lösningar kommer att behandlas, samt metoder och modeller för cybersäkra system.
Allt sker digital på distans, genom Zoom/motsvarande. Föreläsningar – kommer inte att spelas in – varvas med seminarier där olika frågeställningar behandlas i dialog med deltagarna. Undervisningen sker på svenska.
Kurstillfällen: Digitalt, sex eftermiddagar á 3 timmar enligt:
Tisdag 20 jan 2026, kl. 1315-1600
Torsdag 22 jan, kl. 1315-1600
Tisdag 27 jan, kl. 1315-1600
Onsdag 28 jan, kl. 1315-1600
Onsdag 4 feb, kl. 1315-1600
Torsdag 5 feb, kl. 1315-1600
Kursen tar ca 80h att genomföra.
Efter kursen ska du ha fått en ökad förståelse för behovet av säkra digitala lösningar samt en bättre medvetenhet (”awareness”) om digitala sårbarheter. Kursen behandlar metoder och verktyg för att stärka en cybersäker miljö, med fokus på samhällskritiska elinfrastrukturer.
Kursen vänder sig till dig som arbetar inom någon samhällskritisk funktion, såsom elbolag, trafikverk, vattenreningsverk eller sjukvårdssystem. Du ska ha en teknisk bakgrund, med kunskap om ditt område där du är verksam.
Lär dig mer om vindkraft, dess miljöpåverkan och tillståndsärenden på Vindkraftkurs.se Syftet med kursen är att öka kunskapen om vindkraft och specifikt om frågeställningar som är aktuella vid tillståndsärenden. Innehåll Kursen är uppbyggd av fyra moduler: 1. Vindkraftens förutsättningar 2. Miljöpåverkan 3. Prövning och tillsyn 4. Idébank & lokal nytta Kursupplägg Du väljer själv när samt i vilken takt du vill genomföra momenten. Samtliga delar av kursen är avgiftsfria. Att gå igenom hela kursen tar ca 3–5 dagar beroende på hur intensivt/extensivt du läser. Du kan även välja att läsa delar av kursen. Inne i modulerna finns både sökfunktion och kursöversikt, så att du lätt kan orientera dig genom kursens innehåll. Skapar du ett konto och genomför testerna så erhåller du ett diplom. Vem vänder sig kursen till? Vindkraftskurs.se riktar sig till handläggare i kommuner och länsstyrelser samt till alla som vill lära sig mer om vindkraft.
Society is transitioning from oil dependency to metal dependency as we are turning to fossil-free alternatives in the energy and transport sectors. Today, many more metals in the periodic table are used in our daily lives compared to only a few decades ago and many metals that previously had marginal applications are today central to achieving the climate goals. But where do these metals come from and how are they linked to geology?In this course, you will explore the basics of geology and understand how geology controls where critical metals are in the earth’s crust. You will gain insight into what it takes to mine an ore body and broaden your perspective on what risks and challenges we are facing when it comes to the raw material supply that drives the fossil-free energy transition. This course covers the role of ore geology in the transition to fossil-free energy and transport systems, which means that we are moving from oil dependency to metal dependency. Geological processes throughout the earth’s history are responsible for the current distribution of ore deposits. By understanding how these ore forming processes work, we can better explain why certain metals occur in extractable amounts in one place while being almost absent in another. To meet the global demand of metals needed in, for example, solar panels, wind turbines, and batteries, a thorough understanding of how geological processes work is fundamental. In this course, you will be introduced to the fantastic world of the subsurface that made all the technology you take for granted possible. You will explore: What critical metals are, where they are produced today, and what risks and challenges are involved in the supply of raw materials that drives the fossil-free energy transition. Basic geology – minerals, rock types, geological structures and why they matter. What an ore is and the natural processes that accumulate metals in the earth’s crust. This course is designed for people that would like to gain knowledge about the role of geology in the transition to fossil-free energy systems. The course is for those who want to know more about what critical metals are, how an ore is formed, and about risks and challenges coupled to the supply of raw materials that drive the energy transition. This may include politicians and other authorities, teachers and students in elementary and high school that want to know more about subjects critical to the energy transition. It may also include university students within the social sciences, and many more. The course will also be useful for anyone who is employed and wishes to upskill within the area of societal challenges coupled to the supply of raw materials and the need for metals in modern society. The course will be given in english.
Hydrogen is a clean fuel, a versatile energy carrier, and seems to be the answer to the climate change challenge. Why is everyone talking about it, and how is it going to replace traditional fuels? This modularized course provides a comprehensive overview on hydrogen as an energy carrier, with focus on fuel cell as hydrogen conversion technology. Hydrogen production and storage and their role in decarbonization will be covered. Different fuel cell technologies will be analyzed and discussed to present benefits and challenges in the use of hydrogen for power production, urban mobility, aviation, transportation, residential sector and much more. The learners will be able to combine the available modules to create their personalized education based on their needs and get insights on where and when hydrogen can play a role in a carbon-free society.
This course has an English version. Look for course with title "Why choose wood for the next high rise building?" KursbeskrivningOlika typer av biomaterial (t.ex. trä) är mycket viktiga i utmaningen att avkarbonisera byggmiljön och minska koldioxidavtrycket för byggnader och infrastruktur genom att ersätta material som stål och cement som har höga koldioxidutsläpp. Samtidigt får vi inte glömma bort att biologisk mångfald, natur och sociala värden i våra skogar är viktigt att behålla samtidigt som skogsbruk bedrivs. I kursens 13 moduler tas skogsbrukets kretslopp upp inklusive avverkningsmetoder, biologisk mångfald, skogsskötsel, logistik, skogens roll i klimatomställningen, kolinlagring, miljöfördelar med att bygga flervåningshus i trä mm. Syftet är att ni som deltar i kursen ska få en gemensam förståelse av det svenska skogsbruket för att ni sen ska kunna fatta välgrundade beslut om materialval vid nästa byggprojekt. KursperiodKursen kommer att vara aktiv under 3 år. InnehållSkogshistoria: Skogens nyttjande i Sverige genom historienSkogsbruksmetoder och skogsskötselSkogsföryngringVirkets egenskaperMätning av skog och virkeSkogsträdsförädling: nutid och framtidSkogens kolbalans och klimatetAffärsmodeller och marknadsutveckling: Fokus flervåningshus med trästommarNaturvård och biologisk mångfald i skogen Kursens uppläggKursen är helt digital med förinspelade föreläsningar. Du kan delta i kursen i din egen takt. Modulerna avslutas med quiz där du kan testa hur mycket du har lärt dig. Du kommer få kunskap omEfter avslutad kurs kommer du att ha lärt dig mer om olika skogliga begrepp, förvärvat kunskap om skogens nyttjande i Sverige genom historien, ökat dina kunskaper om skogsskötsel och hur olika skogsskötselmetoder påverkar den biologiska mångfalden i skogen, lärt dig om skogsbrukets kretslopp – från föryngring till slutavverkning mm. Vem vänder sig kursen till?Den här kursen är tänkt för dig som är yrkesverksam arkiktekt, anställd på kommun som arbetar med stadsplanering och byggande, verksam i bygg- och anläggningsbranschen samt verksam i andra relaterade yrken. Detta är en introduktionskurs och kommer att bidra till en kompetenshöjning i hela byggsektorns ekosystem vilket ökar branschens internationella konkurrenskraft, samtidigt som det ger viktiga förutsättningar för utvecklingen av framtidens hållbara, vackra och inkluderande städer. Eftersom kursen är öppen för alla hoppas vi att fler grupper, exempelvis studenter, doktorander, skogsägare och andra med skogsintresse tar kursen, tar del av inspirerande föreläsningar där vetenskaplig kunskap som producerats huvudsakligen inom SLU presenteras.För mer information kontakta kurskoordinator dimitris.athanassiadis@slu.se
The EU’s circular economy strategy increases the need for expertise in the use of sustainable and recycled materials. This course provides tools and knowledge for the use of sustainable materials, development towards sustainability of existing materials, recycled and upcycled materials and how they contribute to the green transition through reduced energy consumption, longer lifespan, reduced costs, reduced waste volumes, better user-friendliness and opportunities for social entrepreneurship. The course will give you the opportunity to work on your own project in your own context and include different creative and practical tools. Course content Part 1: Introduction to the Circular Economy Part 2: Design for Recycling Part 3: Use of Recycled Materials Part 4: Substitution with Sustainable Alternatives Part 5: Conditions for Circular Systems and Economies Course design Open online course with pre-recorded lectures, interview and workshops, with reading, reflection and creative assignments. Self-paced, start and finish when you want to. This course takes about 80 hours to complete. You will learn How circular economy, material flows and sustainable materials can be understood in a broader sustainability context. Using various tools and models to analyze and improve material flows and product design. Practically apply and implement the knowledge in the course to their own business or a chosen project. Who is the course for? The course is aimed at professionals in industry, waste management, construction, material production, product development, recycling solutions, local and regional government, design and different creative professions. It is also open to students on all levels and participants without an academic background who want to deepen their knowledge in circular economy and sustainable material choices.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration