Search

Halmstad University

Halmstad University adds value, drives innovation and prepares people and society for the future. The University has from the start been characterised as forward-thinking and collaborative and offers popular and reality-based education programmes. The research is profiled within two focus areas: Health Innovation and Smart Cities and Communities. The School of Information Technology (ITE) is a strong research and education environment, with focus on smart technology and its applications. Students and researchers are working with everything from AI and information driven care to autonomous vehicles, social robotics and digital design.

5 RESULTS

Applied Deep Learning with PyTorch

The aim of this course is that students will learn about the analysis, design, and programming of deep learning algorithms. The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Applied Deep Learning with PyTorch, 5 credits Who is this course for?This course provides the theoretical and practical aspects of deep neural networks. It is intended for students with a background in computer science and engineering. What will you learn from this course?Students will learn about the analysis, design, and programming of deep learning algorithms. The course has two modules: theory and practice. The theoretical content covers basic principles of multi-layer perceptions, spatio-temporal feature extraction with convolutional neural networks (CNNs), and recurrent neural networks (RNNs), classification and regression of big data, and generating novel data samples using generative models. The practical sessions cover the basics of programming with PyTorch. For instance, image classification and semantic segmentation using CNNs, future image frame prediction with RNNs, and image generation with generative adversarial networks. What is the format for this course?Instruction type: Teaching is in English and fully online. It consists of lectures, computer exercises, and project work. In the computer exercises, the student solves small problems using deep learning models. After programming various exercises, the participants will develop an advanced deep learning project. Participants will be encouraged to bring their own data. High-end GPU machines can be provided for the exercises and project.

Bayesian Statistics for Machine Learning

The course is broken down into: Basic Bayesian concepts Selecting priors, deriving some equations Bayesian inference, Parametric model estimation Sampling based methods Sequential inference (Kalman filters, particle filters) Approximate inference, variational inference Model selection (missing data) Bayesian deep neural networks

Critical Design and Practical Ethics for AI

The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Critical design and practical ethics for AI, 3 credits Who is this course for? Artificial Intelligence (AI) is being increasingly implemented and used in society today. It has already proven to have an impact on the individual, organization and society, and this impact will most likely only increase. Therefore, it is important to understand the ethical issues that may arise from use of AI, as well as to adopt a critical stance to the technology’s impact. The course introduces critical and ethical issues surrounding data and society, to train the student to problematize and reason about artificial intelligence (AI). You are most likely a designer, innovator, or product manager that works with digital services and products. What will you learn from this course? The course deals with different perspectives on AI and its real and potential effect on organizations and society. The course is based on five different perspectives on AI: accountability, surveillance capitalism, power and bias, sustainability, and trust. The course material consists of recent and relevant literature on the impact of, and critical perspectives on AI. Active discussions founded in different ethical perspectives are also an important part of the course. What is the format of this course? This course is primarily self-paced, with a few synchronous meetings. Most activities are based on the student’s having consumed specified material beforehand, such as video lectures, podcasts, articles, and books. Active discussions, both in online forums and during synchronous meetings, are an important part of the course.

Design for Extended Realities

The course consists of three parts that introduce and explore the design of extended realities along different axes: a framing perspective, illustrating what XR is, how it has evolved, and how designing XR differs from traditional digital design practices; a methodological perspective, detailing those XR-specific theory and methods that address XR design issues; and a practical perspective, exploring best practices and concrete design activities through direct application of these to a case. Each part consists of lectures, readings, supervision, and an assignment centered on the specific topics discussed in the part of the course.Assignments are carried out by students individually and will be peer-reviewed first and then discussed with the teachers and the class using a design critique approach.

Smart Healthcare with Applications

The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Smart Healthcare with Applications, 4 credits Who is this course for?The course suits you with any Bachelor’s degree (equivalent of 180 Swedish credit points / ECTS credits at an accredited university) who have an interest in applying Artificial Intelligence (specifically Machine Learning) to healthcare. Leadership/management experience in health-related organization/industry OR a Bachelor degree in computer science is advantageous. What will you learn from this course?Healthcare as a sector together with other health-related sources of data (municipalities, home sensors, etc.), is now in a place and can take advantage of what data science, Artificial Intelligence (AI), and machine learning (ML) have to offer. Information-driven care has the potential to build smart solutions based on the collected health data in order to achieve a holistic fact-based picture of healthcare, from an individual to system perspective. This course aims to provide a general introduction to information-driven care, challenges, applications, and opportunities. Students will get introduced to artificial intelligence and machine learning in specific, as well as some use cases of information-driven care, and gain practice on how a real-world evidence project within information-driven care is investigated. What is the format for this course?Instruction type: The lectures, announcements, and assignments of this course will be fully online via a learning management system and presented in English. Each lecture is delivered through a video conference tool with a set of presentation slides displayed online during each class session. Online practical labs (pre-written Python notebooks) are also provided in the lectures.