Search

Open for the Climate

A government mission to create open online education for climate change. Nine higher education institutions in collaboration to create a wide range of education in dialogue with relevant organizations in business and the surrounding society. The assignment is coordinated by Uppsala University. The aim is to enable shorter further education in relevant areas, such as engineering, science, procurement law, computer science and urban social planning etc. The courses developed are presented here.

102 RESULTS

Conditions and Challenges of Sustainability

If you are interested in learning more about the critical application of sustainability, then this course will be of definite interest. This course considers sustainability from a number of perspectives, particularly how it is approached, interpreted, worked alongside and implemented. The course will be of interest to all who are keen to learn more about sustainability, especially from a critical perspective. The issues focused on include democracy, personal interpretation and cooperation.  This is an introductory course within the field of sustainability science with contributions from experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Poland, Sweden and Lithuania.  The course is structured into three parts, beginning with an introduction to the Anthropocene which helps to provide some important context for the course. The second and third chapters focus on the critical issues at play when it comes to sustainability including working for sustainability and being together for sustainability.  Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se

Cybersäkerhet i samhällskritiska system, med fokus på elsystem

Digital säkerhet, cybersäkerhet, är en nödvändighet för en fungerande samhällskritisk infrastruktur, såsom elsystem, vattenrening, trafik och sjukvård. Detta blir speciellt tydligt då vi går mot en grön omställning av vårt samhälle, då just samhällskritiska funktioner måste fungera och digitalisering av samhällskritiska funktioner ökar, för att vi ska kunna effektivisera olika verksamheter. Och med det följer att cybersäkra lösningar är ett måste, så att samhället och dess medborgare inte drabbas av digitala intrång. I denna kurs kommer exempel tas upp från olika samhällskritiska funktioner, med fokus på elsystemet. Digitala lösningar kommer att behandlas, samt metoder och modeller för cybersäkra system. Innehåll - Samhällskritiska system- Sveriges och Nordens elsystem- Styrning och övervakning av elsystem- Analys av digitala lösningar för elsystem- Informationssäkerhetsbegrepp: konfidentialitet, riktighet och tillgänglighet; spårbarhet.- Internationell ISO/IEC standardisering- Omvärldsanalys Kursens upplägg Allt sker digital på distans, genom Zoom/motsvarande. Föreläsningar – kommer inte att spelas in – varvas med seminarier där olika frågeställningar behandlas i dialog med deltagarna.   Du kommer få kunskap om Efter kursen ska du ha fått en ökad förståelse för behovet av säkra digitala lösningar samt en bättre medvetenhet (”awareness”) om digitala sårbarheter. Kursen behandlar metoder och verktyg för att stärka en cybersäker miljö, med fokus på samhällskritiska elinfrastrukturer. Vem vänder sig kursen till? Kursen vänder sig till dig som arbetar inom någon samhällskritisk funktion, såsom elbolag, trafikverk, vattenreningsverk eller sjukvårdssystem. Du ska ha en teknisk bakgrund, med kunskap om ditt område där du är verksam. 

Data driven modeling for engineers

Numerical models are used in every engineering task, from conceptual design to optimization, control, and diagnostics. As the process becomes more complex, data driven models are a powerful tool that allows to quantify relationships between available data and observations, which forms the basis for machine learning. Image recognition, spam filtering, and predictive analytics are some examples of how we can use data driven models. This course provides a simple introduction to fundamental techniques for dimensionality reduction, classification, and regression, which can be applied to all types of engineering problems.

Data Science for Climate Change

Big data and the algorithms used in data science, together with the corresponding process and its technology tools, have important implications for addressing climate change. From machine learning algorithms to data visualization, data science methods are used to investigate and better understand climate change and its various effects on land, sea, food, etc.Data science is a powerful approach which is capable of helping practitioners, and policy-makers understand the uncertainties and ambiguities inherent in data, to identify interventions, strategies, and solutions that realize the benefits for humanity and the environment, and to evaluate the multiple– and sometimes conflicting–goals of decision-makers. In this MOOC course, we introduce methods pertaining to the growing field of data science and apply them to issues relevant to climate change. Topics Data science Analytics as a process Data-driven decisions Climate change Applications of data science in climate change Course content Understand data science Learn about the sources of big data Understand the basics of climate change, its impacts and sustainable development goals Get to know data-driven decisions and how they are made Highlight some climate change challenges that are directly or indirectly related to data science Apply data science knowledge and skills to make climate change related decisions Learn how others have used data science in association with addressing climate change problems You will learnBy the end of the course, you will be able to: obtain and analyze datasets; make data-driven decisions; identify and address climate change challenges using data science Who is the course for?This course is designed for those who want to improve their analytics and data-driven decision-making skills, with an emphasis on utilizing such skills for addressing climate change challenges. The course will also be useful for practitioners and policy-makers as they can benefit from understanding the uncertainties and ambiguities inherent in data and using it to identify interventions, strategies, and solutions that realize benefits for humanity and the environment.

Data-based Modeling and Decision-Making

Global digitalization generates vast amounts of data, making data-driven decision-making essential for success in many industries. The ability to transform data into actionable insights can enhance business strategies, operational efficiency, and sustainability efforts. This course provides an introduction to data analysis and decision-making using predictive models and machine learning. Participants will be introduced to methods and tools for analyzing data, building predictive models, and making strategic decisions based on data-driven insights. Course content • Fundamentals of data-driven decision-making• Introduction to machine learning and predictive analysis• Tools and methods for data analysis and modeling What you will learn • Understand the basics of data-driven decision-making and its applications• Analyze data using predictive models and machine learning techniques• Develop strategic decisions based on data analysis Who is the course for? The course is designed for business leaders, managers, researchers, and professionals who want to use data-driven analysis to improve business strategies and drive sustainable development. It is also suitable for technicians and analysts looking to build their skills in data analysis and decision-making. LanguageThe course is conducted in English. Additional informationThe course includes 80 hours of study and is offered for a fee.

Design of electric drive systems for industrial applications and electric vehicles

Electric drive systems are central to the transition toward sustainable transport and industrial solutions. Efficient design and implementation of drive systems can reduce energy consumption and improve performance. This course covers the fundamentals of designing and optimizing electric drive systems for various applications. Course Content Principles of electric drive systems Design for energy efficiency and performance Applications in industry and electric vehicles What You Will Learn Design electric drive systems for different applications Optimize systems for energy efficiency and sustainability Analyze challenges and opportunities in electric drive systems Who Is the Course For? The course is tailored for engineers and developers in the transport and manufacturing industries, as well as professionals working with the electrification of vehicles and industrial systems. Language The course is conducted in English. Additional information The course includes 65 hours of study and is offered for a fee.

Design of integrated circuits

Integrated circuits are central to many of today’s technologies, and their design can significantly impact energy efficiency and sustainability. This course introduces techniques for designing integrated circuits with a focus on environmental aspects. Course content Basic design principles for integrated circuits Energy-efficient solutions for electronics designSustainability in integrated circuit development What you will learn Design integrated circuits with a focus on energy efficiency Implement sustainable solutions in the electronics industry Understand the connection between circuit design and environmental impact Who is the course for? The course is designed for electronics developers, engineers, and technicians working with circuit design who want to focus on sustainability and energy efficiency in their solutions. LanguageThe course is conducted in Swedish and English. Additional informationThe course is offered for a fee.

Designing Cycles at 64°

UMA TALKS CLIMATE CHANGE 2022 Climate Adaptation of the Built Environment DESIGNING CYCLES AT 64°   Interior Urban Landscapes and the Water-Energy Food Nexus Climate change demands a recalibration of our built environment to become more resilient. Designing Cycles at 64° takes a multi-scalar approach addressing individual building typologies and, exemplarily for climate adaptation of northern climate zones, the city of Umeå with its diverse urban fabric as a whole. The active involvement of all stakeholders in the planning and future use of buildings and open spaces becomes key. How to create spaces that contribute to community building and social interaction while integrating a maximum of ecosystemic services is therefore a central question that demands for implementable methods, tools, processes and design solutions. At 64° latitude, interior landscapes and the water-energy-food nexus offer interesting possibilities to extend growing seasons and diversify crops, to reduce energy consumption while providing hybrid living spaces between inside and outside. By exploring greenhouse extensions and building envelopes as local passive architectural solutions, DC64° sets out to build productive interfaces between the private and public sector, academia involving the disciplines of architecture and urban planning, urban water management, plant physiology and vertical gardening, as well as the general public in a living lab format. Retrofitting the existing building stock, repurposing vacancies and expanding our building performance may accumulatively have a systemic impact both in terms of reducing water and energy consumption, as well as food miles, while buffering existing infrastructure networks and enabling local food production on site. Expanding on Bengt Warne’s Naturhus (1974) and following examples, we anticipate new multifunctional architectural models applicable in various contexts and scales. FORMAT / The program includes an introductory lecture that addresses climate urgencies and potential capacity for change in the context of the built environment the week before the one-day symposium (hybrid format). The symposium brings together practitioners, researchers and educators and consists of five thematic sessions that can be attended as a full day or individually as they are interrelated, yet also function independently (See program link below). INTENDED LEARNING OUTCOMES / Understanding of multi-scalar climate-adapation design approaches within the built environment with a focus on the Nordic context / Reflect on aspects of social sustainability when it comes to transforming buildings and inhabitants from being consumers to becoming producers /   Umeå University School of Architecture   Presentations   Program Nov. 30.     For any questions content-related questions please email us cornelia.redeker@umu.se sara.thor@umu.se constanze.hirt@umu.se  

Djurvälfärd och hållbarhet

Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.