Applications 2024-01-01
COURSE DESCRIPTION
Numerical models are used in every engineering task, from conceptual design to optimization, control, and diagnostics. As the process becomes more complex, data driven models are a powerful tool that allows to quantify relationships between available data and observations, which forms the basis for machine learning. Image recognition, spam filtering, and predictive analytics are some examples of how we can use data driven models. This course provides a simple introduction to fundamental techniques for dimensionality reduction, classification, and regression, which can be applied to all types of engineering problems.
Big data and the algorithms used in data science, together with the corresponding process and its technology tools, have important implications for addressing climate change. From machine learning algorithms to data visualization, data science methods are used to investigate and better understand climate change and its various effects on land, sea, food, etc.Data science is a powerful approach which is capable of helping practitioners, and policy-makers understand the uncertainties and ambiguities inherent in data, to identify interventions, strategies, and solutions that realize the benefits for humanity and the environment, and to evaluate the multiple– and sometimes conflicting–goals of decision-makers. In this MOOC course, we introduce methods pertaining to the growing field of data science and apply them to issues relevant to climate change. Topics Data science Analytics as a process Data-driven decisions Climate change Applications of data science in climate change Course content Understand data science Learn about the sources of big data Understand the basics of climate change, its impacts and sustainable development goals Get to know data-driven decisions and how they are made Highlight some climate change challenges that are directly or indirectly related to data science Apply data science knowledge and skills to make climate change related decisions Learn how others have used data science in association with addressing climate change problems You will learnBy the end of the course, you will be able to: obtain and analyze datasets; make data-driven decisions; identify and address climate change challenges using data science Who is the course for?This course is designed for those who want to improve their analytics and data-driven decision-making skills, with an emphasis on utilizing such skills for addressing climate change challenges. The course will also be useful for practitioners and policy-makers as they can benefit from understanding the uncertainties and ambiguities inherent in data and using it to identify interventions, strategies, and solutions that realize benefits for humanity and the environment.
The information and communication technology (ICT) sector is responsible for approx. 1.8-2.8% of the global greenhouse gas (GHG) emissions in 2020, and software is both part of the problems and the solutions. Traditional software engineering principles and techniques do not consider the climate, environment, and sustainability aspects in building and using software for any purpose. We, software engineers, developers, researchers, climate scientists, and various other related stakeholders, need to think about how we can reduce the carbon footprint due to building and using software-intensive systems. Green and sustainable software engineering is an emerging concept that can help reduce the carbon footprint related to software. In this introductory course, we will introduce the concept of green and sustainable software engineering and the engineering process to build green and sustainable software. Topics Sustainable and green computing Sustainable and green software engineering Process Energy efficient computing Sustainability issues in Scientific computing You will learnBy the end of the course, you will be able to: analyze the green and sustainability issues in traditional software engineering, identify and incorporate key elements to be included in the software engineering process to make the software green and sustainable, and use techniques to make your software code energy efficient. Who is the course for?This course is designed for those who are software developers, managers and software related policy makers, or have knowledge about software development, and want to consider the green and sustainability aspects in their everyday life. Also, this course will be useful for computational scientists who build green software and want to know more about these aspects in software engineering. However, this is an introductory course, and it will show a path for life-long learning to build more in-depth knowledge in each concept introduced in this course.
The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Three online meetings. Dates TBD – Starting mid November.
In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability. Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition. This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals. Target groupThe target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants. Online seminarsDecember 10th at 14.00 to 15.00January 14th at 14.00 to 15.00January 31st at 14.00 to 15.00February 13th at 14.00 to 15.00February 28th at 14.00 to 15.00 Entry requirements Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent. Or professional experience requirements four to five years of experience in relevant industries.
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Business models that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. This course has a particular focus on the interplay between business models, product innovation and production processes. Through this course, you will explore the critical relationship between sustainable practices and business strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for business development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various business model practices in different types of development work. The objective is for course participants to enhance their ability to understand and apply business development processes in the manufacturing industry, and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are incuded. Study hours 40 hours distributed over 7 weeks from week 45, 2024 to week 52, 2024. Webinar 1: November 11Webinar 2: December 3Webinar 3: December 16 Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024. This course Business development for circular flow together with Product development for circular flows and Production for cirkular flows are free standing independent courses that build on knowledge in the field.