Applications 2024-09-16 - 2025-01-05
COURSE DESCRIPTION
The course covers different aspects of securing OS and system services to provide the safe environment for running cloud-based services. The following guidelines will be considered during the course as well as pracTical implementation of Windows and Linux platforms hardening using scripts (e.g. PowerShell and Ansible) to provide automation.
This course makes you acquainted with the concept of systems-of-systems (SoS), which means that independent systems are collaborating. It gives you an understanding why SoS is an important topic in the current digitalisation and provides a theoretical and practical foundation for understanding important characteristics of SoS. It also gives you a deeper knowledge in a number of key concerns that need to be considered when engineering SoS. Admitted students may join the course any time between September 2 and October 6, 2024. With the recommended study pace of 25%, the course would take approximate seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than January 19, 2025.
The purpose is to give the students an overview of issues and methods for development and assurance of safety-critical software, including details of selected technologies, methods and tools. The course includes four modules: Introduction to functional safety; knowledge that give increased understanding of the relationship between Embedded systems / safety-critical system / accidents / complexity / development models (development lifecycle models) / certification / “the safety case”. Analysis and modelling methods; review of analysis and modelling techniques for the development of safety-critical systems. Verification and validation of safety critical software, methods and activities to perform verification and validation. Architectures for safety critical systems. Safety as a design constraint.
The aim of the course is to introduce the participants into methods and tools for verifying systems that need to react to external stimuli. The methods use system models with precise formal semantics and will span model-checking as well as deductive verification. A set of simple examples as well as real-world applications will be used throughout the course to illustrate the methods and their tool support. The objective of the course is to understand the underpinning theories of formal verification, and learn how to apply tool support in order to verify system models.
The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Smart Healthcare with Applications, 4 credits Who is this course for?The course suits you with any Bachelor’s degree (equivalent of 180 Swedish credit points / ECTS credits at an accredited university) who have an interest in applying Artificial Intelligence (specifically Machine Learning) to healthcare. Leadership/management experience in health-related organization/industry OR a Bachelor degree in computer science is advantageous. What will you learn from this course?Healthcare as a sector together with other health-related sources of data (municipalities, home sensors, etc.), is now in a place and can take advantage of what data science, Artificial Intelligence (AI), and machine learning (ML) have to offer. Information-driven care has the potential to build smart solutions based on the collected health data in order to achieve a holistic fact-based picture of healthcare, from an individual to system perspective. This course aims to provide a general introduction to information-driven care, challenges, applications, and opportunities. Students will get introduced to artificial intelligence and machine learning in specific, as well as some use cases of information-driven care, and gain practice on how a real-world evidence project within information-driven care is investigated. What is the format for this course?Instruction type: The lectures, announcements, and assignments of this course will be fully online via a learning management system and presented in English. Each lecture is delivered through a video conference tool with a set of presentation slides displayed online during each class session. Online practical labs (pre-written Python notebooks) are also provided in the lectures.
The course has the objective to provide proficiency in cybersecurity analysis and design in industrial settings, with a special focus on smart factories and Industry 4.0. To that aim, you will learn about advanced cybersecurity concepts, methodologies and tools. You will also be able to apply your knowledge to case-studies of industrial relevance.
Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you. You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English. The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University: Internet of things for industrial applications, 5 credits Simulation of production system, 5 credits Big data for industrial applications, 5 credits