Applications 2024-12-08
COURSE DESCRIPTION
Chemical processes play a crucial role in the green transition, from producing sustainable materials to reducing emissions. This course provides a fundamental understanding of chemistry and its application in sustainable solutions.
Course Content
What You Will Learn
Who Is the Course For?
The course is designed for chemists, process engineers, and other professionals in the chemical industry who want to understand and apply sustainable chemical processes.
Language
The course is conducted in English.
Additional information
The course is offered for a fee.
The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you. What will you learn?You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society? Who is the course for?The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up. Who are the teachers?Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration
Energy cycle and basics of redox chemistry - The course will first give an introduction about some fundamental concepts in physics and chemistry that are essential to understand the transfer of energy in living organisms. Photosynthetic organisms as green batteries - The course will then focus on plants and their extraordinary energy metabolism allowing them to store solar energy to power the rest of living organisms as well as our societies. More sustainable future - Through many examples, we will see how photosynthetic organisms can be used to operate a green transition at different levels of our societies. Lectures are mandatory, no exam. On-site. Learning outcomes Get, through well illustrated lectures, a primary contact with the scientific tools and knowledge necessary to understand the concepts of bioenergy. Accessible to Suitable for interested public, primary school teachers, students and all persons out of gymnasium. The course can start as early as Autumn 2026. Further details about the course start and registration will be available soon.
Hydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. Study hoursHydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. SeminarsSeminar lab: December 10th 2025 at 16:00-18:00 Seminar assignments: January 14th 2026 at 16:00-18:00 Entry reqirements180 credits in science/technology, including a basic course in chemistry of 7.5 credits (e.g. Chemical Principles, K0016K). Good knowledge of English, equivalent to English 6 or equivalent real competence gained through practical experience. Target groupProfessionals in industry, academia or institute, everyone that fulfills the criteria is welcome but the course is created for further education.
This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges. The students bring their own case study example as the background for a practical project, through which the student is also finally examined. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Online meetings (estimated): 14 Oct.: Introduction11 Nov.: Project Idea16 Dec.: Project Presentation Study hours: 80 This course is given by Örebro University.
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage