COURSE DESCRIPTION
Är du intresserad av hur modern teknik kan användas för att effektivisera energianvändning? På denna distanskurs lär du dig designa och bygga enklare system för att övervaka och styra en energianläggning, vilket effektiviserar energianvändningen. Perfekt för fastighetsägare, fastighetstekniker, fastighetsskötare och ingenjörer som vill bidra till en hållbar framtid.
Kursen behandlar hur modern teknik kan användas för att effektivisera energianvändning i fastigheter och därigenom bidra till ett minskat behov av energi. Detta ligger i linje med en mer hållbar samhällsbyggnad och ger en ökad grad av självförsörjning av den energi vi behöver i samhället.
Kursen ges som distansutbildning där undervisningen sker via obligatoriska laborationer, föreläsningar samt frågestunder via videokonferenssystem och inspelade filmer. Du förutsätts arbeta relativt självständigt med laborationer och egna projekt. Under kursens gång behöver du ha tillgång till egen Raspberry Pi med tillhörande nödvändig utrustning såsom skärm, mus, tangentbord och strömförsörjning.
Kursen ges i samarbete med industriföretag.
Efter kursen ska du kunna designa och bygga ett enklare system för att monitorera och eventuellt styra en energianläggning i en fastighet. Du ska även kunna koppla samman systemet med ett smarta hem-system för visualisering av data.
Den här kursen är för dig som är fastighetsägare eller arbetar inom fastighetsbranschen som fastighetstekniker, fastighetsskötare eller ingenjör.
This course provides a fundamental knowledge of IoT, targeting physical devices, communication and computation infrastructure. The course gives theoretical knowledge as well as hands-on experiences to build an IoT application.
The Internet of Things (IoT) is a networking paradigm which enables different devices (from thermostats to autonomous vehicles) to collect valuable information and exchange it with other devices using different communications protocols over the Internet. This technology allows to analyse and correlate heterogeneous sources of information, extract valuable insights, and enable better decision processes. Although the IoT has the potential to revolutionise a variety of industries, such as healthcare, agriculture, transportation, and manufacturing, IoT devices also introduce new cybersecurity risks and challenges. In this course, the students will obtain an in-depth understanding of the Internet of Things (IoT) and the associated cybersecurity challenges. The course covers the fundamentals of IoT and its applications, the communication protocols used in IoT systems, the cybersecurity threats to IoT, and the countermeasures that can be deployed. The course is split in four main modules, described as follows: Understand and illustrate the basic concepts of the IoT paradigm and its applications Discern benefits and drawback of the most common IoT communication protocols Identify the cybersecurity threats associated with IoT systems Know and select the appropriate cybersecurity countermeasures Course Plan Course syllabus Module 1: Introduction to IoT Definition and characteristics of IoT IoT architecture and components Applications of IoT Module 2: Communication Protocols for IoT Overview of communication protocols used in IoT MQTT, CoAP, and HTTP protocols Advantages and disadvantages of each protocol Module 3: Security Threats to IoT Overview of cybersecurity threats associated with IoT Understanding the risks associated with IoT Malware, DDoS, and phishing attacks Specific vulnerabilities in IoT devices and networks Module 4: Securing IoT Devices and Networks Overview of security measures for IoT systems Network segmentation, access control, and encryption Best practices for securing IoT devices and networks Organisation and Examination Study hours: 80 hours distributed over 6 weeks Scehduled online seminars: February 6th 2025, from 13:15 to 16:00 February 26th 2025, from 13:15 to 16:00 March 12th 2025, from 13:15 to 16:00 Examination, one of the following: Analysis and presentation of relevant manuscripts in the literature Bring your own problem (BYOP) and solution. For example, analyse the cybersecurity of the IoT network of your company and propose improvements The number of participants in the course is limited, so please hurry with your application!
Learn how to use the Internet of Things (IoT) to develop smart products and services. The Internet of Things (IoT) is a collective term for the technologies that enable devices with embedded electronics and internet connectivity such as appliances, machines, and vehicles to be controlled or exchange data over a network. In this course, you will gain basic knowledge of the various components that make up Industrial Internet of Things (IIoT) systems, including sensor technologies, smart tags, data communication, and cyber security. You will learn What requirements are imposed on data communication Understand computer communication technologies and their possibilities, limitations and expected role in the development of IIoT Understand appropriate measures against common security issues
Opens in May 2025. The Swedish version of the course, namely ”Varför välja trä vid nästa byggprojekt?” is already open. For more iformation contact course coordinator dimitris.athanassiadis@slu.seCourse DescriptionDifferent types of biomaterials (e.g., wood) are crucial in the challenge of decarbonizing the built environment and reducing the carbon footprint of buildings and infrastructure by replacing materials like steel and cement, which have high carbon dioxide emissions. At the same time, we must not forget that it is important to preserve biodiversity and the social values of our forests. The 13 modules of the course cover many forestry related subjects, including harvesting methods, biodiversity, forest management, logistics, the role of forests in the climate transition, carbon storage, environmental benefits of multi-story buildings with wood, and more. The goal is that participants will gain a shared understanding of Swedish forestry so that they can make well-informed decisions about material choices for their next construction project. Course PeriodThe course will be active for 3 years. Content Forest history: The utilization of forests in Sweden throughout the past years Forestry methods and forest management Forest regeneration Wood properties Forest mensuration Forest tree breeding The forest's carbon balance Business models and market development: Focus on wood high rises Nature conservation and biodiversity in the forest Course StructureThe course is fully digital with pre-recorded lectures. You can participate in the course at your own pace. Modules conclude with quizzes where you can test how much you have learned. You will learn aboutUpon completion of the course, you will have learned more about various forest-related concepts, acquired knowledge of forest utilization in Sweden throughout the past years, increased your understanding of forest management and how different management methods affect biodiversity in the forest, and learned about the forestry cycle—from regeneration to final harvesting, etc. Who is this course for?This course is designed for professionals such as architects, municipal employees working with urban planning and construction, individuals in the construction and civil engineering sector, and those in other related fields. This is an introductory course and will contribute to upskilling of the entire construction sector, thereby increasing the industry's international competitiveness while also providing important prerequisites for the development of future sustainable, beautiful, and inclusive cities. Since the course is open to everyone, we hope that more groups, such as students, doctoral candidates, forest owners, and others with an interest in forestry, will take the course and engage with inspiring lectures where scientific knowledge primarily produced within SLU (Swedish University of Agricultural Sciences) is presented.
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. You may join the course from March 17 until the middle of April, 2025. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.