COURSE DESCRIPTION
Är du intresserad av hur modern teknik kan användas för att effektivisera energianvändning? På denna distanskurs lär du dig designa och bygga enklare system för att övervaka och styra en energianläggning, vilket effektiviserar energianvändningen. Perfekt för fastighetsägare, fastighetstekniker, fastighetsskötare och ingenjörer som vill bidra till en hållbar framtid.
Kursen behandlar hur modern teknik kan användas för att effektivisera energianvändning i fastigheter och därigenom bidra till ett minskat behov av energi. Detta ligger i linje med en mer hållbar samhällsbyggnad och ger en ökad grad av självförsörjning av den energi vi behöver i samhället.
Kursen ges som distansutbildning där undervisningen sker via obligatoriska laborationer, föreläsningar samt frågestunder via videokonferenssystem och inspelade filmer. Du förutsätts arbeta relativt självständigt med laborationer och egna projekt. Under kursens gång behöver du ha tillgång till egen Raspberry Pi med tillhörande nödvändig utrustning såsom skärm, mus, tangentbord och strömförsörjning.
Kursen ges i samarbete med industriföretag.
Efter kursen ska du kunna designa och bygga ett enklare system för att monitorera och eventuellt styra en energianläggning i en fastighet. Du ska även kunna koppla samman systemet med ett smarta hem-system för visualisering av data.
Den här kursen är för dig som är fastighetsägare eller arbetar inom fastighetsbranschen som fastighetstekniker, fastighetsskötare eller ingenjör.
The Internet of Things (IoT) is a networking paradigm which enables different devices (from thermostats to autonomous vehicles) to collect valuable information and exchange it with other devices using different communications protocols over the Internet. This technology allows to analyse and correlate heterogeneous sources of information, extract valuable insights, and enable better decision processes. Although the IoT has the potential to revolutionise a variety of industries, such as healthcare, agriculture, transportation, and manufacturing, IoT devices also introduce new cybersecurity risks and challenges. In this course, the students will obtain an in-depth understanding of the Internet of Things (IoT) and the associated cybersecurity challenges. The course covers the fundamentals of IoT and its applications, the communication protocols used in IoT systems, the cybersecurity threats to IoT, and the countermeasures that can be deployed. The course is split in four main modules, described as follows: Understand and illustrate the basic concepts of the IoT paradigm and its applications Discern benefits and drawback of the most common IoT communication protocols Identify the cybersecurity threats associated with IoT systems Know and select the appropriate cybersecurity countermeasures Course Plan Course syllabus Module 1: Introduction to IoT Definition and characteristics of IoT IoT architecture and components Applications of IoT Module 2: Communication Protocols for IoT Overview of communication protocols used in IoT MQTT, CoAP, and HTTP protocols Advantages and disadvantages of each protocol Module 3: Security Threats to IoT Overview of cybersecurity threats associated with IoT Understanding the risks associated with IoT Malware, DDoS, and phishing attacks Specific vulnerabilities in IoT devices and networks Module 4: Securing IoT Devices and Networks Overview of security measures for IoT systems Network segmentation, access control, and encryption Best practices for securing IoT devices and networks Organisation and Examination Study hours: 80 hours distributed over 6 weeks Scehduled online seminars: February 6th 2025, from 13:15 to 16:00 February 26th 2025, from 13:15 to 16:00 March 12th 2025, from 13:15 to 16:00 Examination, one of the following: Analysis and presentation of relevant manuscripts in the literature Bring your own problem (BYOP) and solution. For example, analyse the cybersecurity of the IoT network of your company and propose improvements The number of participants in the course is limited, so please hurry with your application!
Business models that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. This course has a particular focus on the interplay between business models, product innovation and production processes. Through this course, you will explore the critical relationship between sustainable practices and business strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives In this course, you will be introduced to systematic working methods for business development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various business model practices in different types of development work. The objective is for course participants to enhance their ability to understand and apply business development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours 40 hours distributed from week 3, 2025 to week 8, 2025. Webinar 1: January 13thWebinar 2: January 20thWebinar 3: February 3rdWebinar 4: February 17th Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024 and will also run spring 2026. This course: Business development for circular flow together with Product development for circular flows (starting March 3) and Production for cirkular flows (starting April 28) are free standing independent courses that build on knowledge in the field.
In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability. Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition. This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals. Target groupThe target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants. Online seminarsDecember 10th at 14.00 to 15.00January 14th at 14.00 to 15.00January 31st at 14.00 to 15.00February 13th at 14.00 to 15.00February 28th at 14.00 to 15.00 Entry requirements Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent. Or professional experience requirements four to five years of experience in relevant industries.
This course has flexible start and you may join until December 8, 2024. The course is designed for you who wants to learn more about functional safety of battery management systems. The course will also cover other aspects of safety such as fire safety in relation to Rechargeable Energy Storage Systems (RESS) and associated battery management systems. In the course you will be able to develop skills in principles of Battery Management Systems, Functional Safety as well as of other aspects of safety such as Fire Safety, hazard identification, hazard analysis and risk assessment in relation to battery management systems. It also aims to provide a broader understanding of the multifaceted nature of safety. The course takes about 80 hours to complete and you can do it at your own pace. There are two scheduled meetings: One after five weeks to resolve any queries and another at the end of the course for the course evaluation. The date and time will be provided within a week of starting of course. Target GroupThis course is primarily intended for engineers that need to ensure that battery management systems are safe, reliable, and compliant with industry standards. The course is suitable for individuals with backgrounds in for example functional safety, battery systems, automotive or risk assessment. Entry requirements120 university credits of which at least 7.5 credits in software engineering and 7.5 credits in safety-critical systems engineering or 60 university credits in engineering/technology and at least 2 years of full-time professional experience from a relevant area within industry or working life experience regarding application of functional safety standards in the automotive domain or in other domains. The experience could be validated via a recommendation letter of a manager stating the involvement of the student in the development of functional safety artefacts. Proficiency in English is also required, equivalent to English Level 6.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. Participants will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. Participants will gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, the student shall be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars March 23rd 2025 at 8:30 - 10:30 (course start) April 29th 2025 at 10:00 - 11:30 (online seminar) June 3rd 2025 at 9:00 - 12:00 (project presentations and course ending) Study effort: 80 hours
About the courseRenewable hydrogen stands out as a highly promising solution to decarbonize heavy industries and transportation sector, helping to achieve the climate goals of Sweden- reaching net zero emissions by 2045. The terms renewable hydrogen, clean hydrogen or green hydrogen refers to hydrogen produced from renewable energy or raw material. The utilization of renewable hydrogen for industrial applications necessitates the development of the entire value chain, from generation and storage to transport and final applications. Unlocking the potential of hydrogen economy in Sweden involves not only technological advancements and infrastructure development but also a skilled workforce. This course offers an introduction of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts. Participants will gain a comprehensive understanding of the technical, economic, and environmental aspects of renewable hydrogen technologies, such as electrolysis, fuel cell, and hydrogen storage and distribution solutions, preparing them with essential knowledge and foundational insights for advancing the decarbonization of industrial processes through the adoption of hydrogen-based energy solutions. Aim and Learning OutcomesThe goal of this course is to develop a basic understanding of renewable hydrogen as a pivotal component for industrial applications, focusing on its generation, storage, transport, and utilization within industrial contexts.The learning outcomes of the course are to be able to: Explain the fundamental knowledge and theories behind electrolysis and fuel cell technologies. Compare and describe the differences of existing renewable hydrogen generation technologies (PEM, AE, AEM, SOE, etc.), and existing fuel cell technologies (PEMFC, MSFC, SOFC, etc.. Describe the principles of hydrogen storage, including gas phase, liquid phase, and material-based storage and thermal management of storage systems. Identify the challenges of hydrogen transportation and be able to describe relevant solutions. Examples of professional roles that will benefit from this course are energy and chemical engineers, renewable and energy transition specialists, policy makers and energy analysts. This course will also support the decarbonization of hard-to-abate industries, such as metallurgical industry and oil refinery industry, by using renewable hydrogen. This course is given by Mälardalen university in cooperation with Luleå University of Technology. Scheduled online seminars April 22nd, 2025May 19th, 2025 Study effort: 80 hours