A government mission to create open online education for climate change. Nine higher education institutions in collaboration to create a wide range of education in dialogue with relevant organizations in business and the surrounding society. The assignment is coordinated by Uppsala University. The aim is to enable shorter further education in relevant areas, such as engineering, science, procurement law, computer science and urban social planning etc. The courses developed are presented here.
85 RESULTS
SHOW
SORT BY:
Big data and the algorithms used in data science, together with the corresponding process and its technology tools, have important implications for addressing climate change. From machine learning algorithms to data visualization, data science methods are used to investigate and better understand climate change and its various effects on land, sea, food, etc.Data science is a powerful approach which is capable of helping practitioners, and policy-makers understand the uncertainties and ambiguities inherent in data, to identify interventions, strategies, and solutions that realize the benefits for humanity and the environment, and to evaluate the multiple– and sometimes conflicting–goals of decision-makers. In this MOOC course, we introduce methods pertaining to the growing field of data science and apply them to issues relevant to climate change. Topics Data science Analytics as a process Data-driven decisions Climate change Applications of data science in climate change Course content Understand data science Learn about the sources of big data Understand the basics of climate change, its impacts and sustainable development goals Get to know data-driven decisions and how they are made Highlight some climate change challenges that are directly or indirectly related to data science Apply data science knowledge and skills to make climate change related decisions Learn how others have used data science in association with addressing climate change problems You will learnBy the end of the course, you will be able to: obtain and analyze datasets; make data-driven decisions; identify and address climate change challenges using data science Who is the course for?This course is designed for those who want to improve their analytics and data-driven decision-making skills, with an emphasis on utilizing such skills for addressing climate change challenges. The course will also be useful for practitioners and policy-makers as they can benefit from understanding the uncertainties and ambiguities inherent in data and using it to identify interventions, strategies, and solutions that realize benefits for humanity and the environment.
Global digitalization generates vast amounts of data, making data-driven decision-making essential for success in many industries. The ability to transform data into actionable insights can enhance business strategies, operational efficiency, and sustainability efforts. This course provides an introduction to data analysis and decision-making using predictive models and machine learning. Participants will be introduced to methods and tools for analyzing data, building predictive models, and making strategic decisions based on data-driven insights. Course content • Fundamentals of data-driven decision-making• Introduction to machine learning and predictive analysis• Tools and methods for data analysis and modeling What you will learn • Understand the basics of data-driven decision-making and its applications• Analyze data using predictive models and machine learning techniques• Develop strategic decisions based on data analysis Who is the course for? The course is designed for business leaders, managers, researchers, and professionals who want to use data-driven analysis to improve business strategies and drive sustainable development. It is also suitable for technicians and analysts looking to build their skills in data analysis and decision-making. LanguageThe course is conducted in English. Additional informationThe course includes 80 hours of study and is offered for a fee.
Electric drive systems are central to the transition toward sustainable transport and industrial solutions. Efficient design and implementation of drive systems can reduce energy consumption and improve performance. This course covers the fundamentals of designing and optimizing electric drive systems for various applications. Course Content Principles of electric drive systems Design for energy efficiency and performance Applications in industry and electric vehicles What You Will Learn Design electric drive systems for different applications Optimize systems for energy efficiency and sustainability Analyze challenges and opportunities in electric drive systems Who Is the Course For? The course is tailored for engineers and developers in the transport and manufacturing industries, as well as professionals working with the electrification of vehicles and industrial systems. Language The course is conducted in English. Additional information The course includes 65 hours of study and is offered for a fee.
Integrated circuits are central to many of today’s technologies, and their design can significantly impact energy efficiency and sustainability. This course introduces techniques for designing integrated circuits with a focus on environmental aspects. Course content Basic design principles for integrated circuits Energy-efficient solutions for electronics designSustainability in integrated circuit development What you will learn Design integrated circuits with a focus on energy efficiency Implement sustainable solutions in the electronics industry Understand the connection between circuit design and environmental impact Who is the course for? The course is designed for electronics developers, engineers, and technicians working with circuit design who want to focus on sustainability and energy efficiency in their solutions. LanguageThe course is conducted in Swedish and English. Additional informationThe course is offered for a fee.
UMA TALKS CLIMATE CHANGE 2022 Climate Adaptation of the Built Environment DESIGNING CYCLES AT 64° Interior Urban Landscapes and the Water-Energy Food Nexus Climate change demands a recalibration of our built environment to become more resilient. Designing Cycles at 64° takes a multi-scalar approach addressing individual building typologies and, exemplarily for climate adaptation of northern climate zones, the city of Umeå with its diverse urban fabric as a whole. The active involvement of all stakeholders in the planning and future use of buildings and open spaces becomes key. How to create spaces that contribute to community building and social interaction while integrating a maximum of ecosystemic services is therefore a central question that demands for implementable methods, tools, processes and design solutions. At 64° latitude, interior landscapes and the water-energy-food nexus offer interesting possibilities to extend growing seasons and diversify crops, to reduce energy consumption while providing hybrid living spaces between inside and outside. By exploring greenhouse extensions and building envelopes as local passive architectural solutions, DC64° sets out to build productive interfaces between the private and public sector, academia involving the disciplines of architecture and urban planning, urban water management, plant physiology and vertical gardening, as well as the general public in a living lab format. Retrofitting the existing building stock, repurposing vacancies and expanding our building performance may accumulatively have a systemic impact both in terms of reducing water and energy consumption, as well as food miles, while buffering existing infrastructure networks and enabling local food production on site. Expanding on Bengt Warne’s Naturhus (1974) and following examples, we anticipate new multifunctional architectural models applicable in various contexts and scales. FORMAT / The program includes an introductory lecture that addresses climate urgencies and potential capacity for change in the context of the built environment the week before the one-day symposium (hybrid format). The symposium brings together practitioners, researchers and educators and consists of five thematic sessions that can be attended as a full day or individually as they are interrelated, yet also function independently (See program link below). INTENDED LEARNING OUTCOMES / Understanding of multi-scalar climate-adapation design approaches within the built environment with a focus on the Nordic context / Reflect on aspects of social sustainability when it comes to transforming buildings and inhabitants from being consumers to becoming producers / Umeå University School of Architecture Presentations Program Nov. 30. For any questions content-related questions please email us cornelia.redeker@umu.se sara.thor@umu.se constanze.hirt@umu.se
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Welcome to this course- Economic Sustainability- an introduction. If you are looking for an introduction to this important topic, then this course is for you! The course begins with an introduction to the Anthropocene, before diving into the subject of economic sustainability. This is explored by a number of angles with supporting literature and quizzes. This is an introductory course to sustainability science with a focus on economics. It is created by experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Lithuania and Poland. You have to finish all stages of each module to finish the course. You have unlimited amounts of tries on the quizzes but you have to get every answer right in order to move on. Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se
Edge computing enables faster and more energy-efficient data processing directly at the source. In robotics, this can lead to improved performance and sustainability. This course introduces the concept of edge computing and its applications in robotics. Course content • Fundamentals of edge computing• Applications of edge computing in robotics• Energy-efficient solutions for data processing What you will learn • Understand the principles of edge computing• Implement edge computing in robotic systems• Optimize data processing for energy efficiency Who is the course for?The course is designed for engineers, developers, and technicians working with robotics, IoT, and data processing who want to implement energy-efficient solutions in their projects. LanguageThe course is conducted in English. Additional informationThe course includes 15 hours of study and is offered for a fee.
About the course:This course is a collaboration between Uppsala University and the United Nations Development Programme. The course aims to strengthen participants' capacity to contribute actively to the fulfilment of the UN Sustainable Development Goals, the SDGs, in a complex, ever changing, global society. It will do so by clarifying the context of the SDGs in the international community, and by addressing the needed solutions from a both human and technical approach. The course consists of three modules, which will take you around 16 hours to complete. Module 1 will provide you with a wider background context to the SDGs and the aim is that following this module you will have gained insight into how humanity is being brought together. You will have received a basic understanding of the framework of the rules-based world order, within which the SDGs are set, how they link to this framework, as well as on how progress is maintained. Module 2 will provide you with collaborative learning tools and methods of co-creation. It will provide insights on why change fails and suggest planning tools and resources to enable transition from the current state to the desired state. It will show how you can apply some of these tools to foster collaborative innovations addressing sustainability challenges. Module 3 will provide you with current-day insights into the United Nations Development Programme, the UN body that manages and follows up the progress of the SDGs. You will be introduced to practical tools used by the organization to promote SDG fulfilment, the UNDP 7-step methodology, exemplified by a special focus on e-mobility. This online course is stand-alone, but it is also given as an advanced level as a five week course awarding university credits. Target group:The course has been created for those of you who are seeking a more in-depth understanding of the background and international context of the Sustainable Development Goals. It is for those of you who want to work hands-on with sustainable development, to strengthen this capacity, and are interested in both the human and technical side of delivering solutions. Suppose you are interested in the climate agenda and the power of collaboration, as well as curious to learn more about electrification in transportation systems. In that case, this is a course for you.