Search

Open for the Climate

A government mission to create open online education for climate change. Nine higher education institutions in collaboration to create a wide range of education in dialogue with relevant organizations in business and the surrounding society. The assignment is coordinated by Uppsala University. The aim is to enable shorter further education in relevant areas, such as engineering, science, procurement law, computer science and urban social planning etc. The courses developed are presented here.

119 RESULTS

Data Science for Climate Change

Big data and the algorithms used in data science, together with the corresponding process and its technology tools, have important implications for addressing climate change. From machine learning algorithms to data visualization, data science methods are used to investigate and better understand climate change and its various effects on land, sea, food, etc.Data science is a powerful approach which is capable of helping practitioners, and policy-makers understand the uncertainties and ambiguities inherent in data, to identify interventions, strategies, and solutions that realize the benefits for humanity and the environment, and to evaluate the multiple– and sometimes conflicting–goals of decision-makers. In this MOOC course, we introduce methods pertaining to the growing field of data science and apply them to issues relevant to climate change. Topics Data science Analytics as a process Data-driven decisions Climate change Applications of data science in climate change Course content Understand data science Learn about the sources of big data Understand the basics of climate change, its impacts and sustainable development goals Get to know data-driven decisions and how they are made Highlight some climate change challenges that are directly or indirectly related to data science Apply data science knowledge and skills to make climate change related decisions Learn how others have used data science in association with addressing climate change problems You will learnBy the end of the course, you will be able to: obtain and analyze datasets; make data-driven decisions; identify and address climate change challenges using data science Who is the course for?This course is designed for those who want to improve their analytics and data-driven decision-making skills, with an emphasis on utilizing such skills for addressing climate change challenges. The course will also be useful for practitioners and policy-makers as they can benefit from understanding the uncertainties and ambiguities inherent in data and using it to identify interventions, strategies, and solutions that realize benefits for humanity and the environment.

Data-based Modeling and Decision-Making

Global digitalization generates vast amounts of data, making data-driven decision-making essential for success in many industries. The ability to transform data into actionable insights can enhance business strategies, operational efficiency, and sustainability efforts. This course provides an introduction to data analysis and decision-making using predictive models and machine learning. Participants will be introduced to methods and tools for analyzing data, building predictive models, and making strategic decisions based on data-driven insights. Course content • Fundamentals of data-driven decision-making• Introduction to machine learning and predictive analysis• Tools and methods for data analysis and modeling What you will learn • Understand the basics of data-driven decision-making and its applications• Analyze data using predictive models and machine learning techniques• Develop strategic decisions based on data analysis Who is the course for? The course is designed for business leaders, managers, researchers, and professionals who want to use data-driven analysis to improve business strategies and drive sustainable development. It is also suitable for technicians and analysts looking to build their skills in data analysis and decision-making. LanguageThe course is conducted in English. Additional informationThe course includes 80 hours of study and is offered for a fee.

Design of Electric Drive Systems for Industrial Applications and Electric Vehicles

Electric drive systems are central to the transition toward sustainable transport and industrial solutions. Efficient design and implementation of drive systems can reduce energy consumption and improve performance. This course covers the fundamentals of designing and optimizing electric drive systems for various applications. Course Content Principles of electric drive systems Design for energy efficiency and performance Applications in industry and electric vehicles What You Will Learn Design electric drive systems for different applications Optimize systems for energy efficiency and sustainability Analyze challenges and opportunities in electric drive systems Who Is the Course For? The course is tailored for engineers and developers in the transport and manufacturing industries, as well as professionals working with the electrification of vehicles and industrial systems. Language The course is conducted in English. Additional information The course includes 65 hours of study and is offered for a fee.

Design of integrated circuits

Integrated circuits are central to many of today’s technologies, and their design can significantly impact energy efficiency and sustainability. This course introduces techniques for designing integrated circuits with a focus on environmental aspects. Course content Basic design principles for integrated circuits Energy-efficient solutions for electronics designSustainability in integrated circuit development What you will learn Design integrated circuits with a focus on energy efficiency Implement sustainable solutions in the electronics industry Understand the connection between circuit design and environmental impact Who is the course for? The course is designed for electronics developers, engineers, and technicians working with circuit design who want to focus on sustainability and energy efficiency in their solutions. LanguageThe course is conducted in Swedish and English. Additional informationThe course is offered for a fee.

Designing Cycles at 64°

UMA TALKS CLIMATE CHANGE 2022 Climate Adaptation of the Built Environment DESIGNING CYCLES AT 64°   Interior Urban Landscapes and the Water-Energy Food Nexus Climate change demands a recalibration of our built environment to become more resilient. Designing Cycles at 64° takes a multi-scalar approach addressing individual building typologies and, exemplarily for climate adaptation of northern climate zones, the city of Umeå with its diverse urban fabric as a whole. The active involvement of all stakeholders in the planning and future use of buildings and open spaces becomes key. How to create spaces that contribute to community building and social interaction while integrating a maximum of ecosystemic services is therefore a central question that demands for implementable methods, tools, processes and design solutions. At 64° latitude, interior landscapes and the water-energy-food nexus offer interesting possibilities to extend growing seasons and diversify crops, to reduce energy consumption while providing hybrid living spaces between inside and outside. By exploring greenhouse extensions and building envelopes as local passive architectural solutions, DC64° sets out to build productive interfaces between the private and public sector, academia involving the disciplines of architecture and urban planning, urban water management, plant physiology and vertical gardening, as well as the general public in a living lab format. Retrofitting the existing building stock, repurposing vacancies and expanding our building performance may accumulatively have a systemic impact both in terms of reducing water and energy consumption, as well as food miles, while buffering existing infrastructure networks and enabling local food production on site. Expanding on Bengt Warne’s Naturhus (1974) and following examples, we anticipate new multifunctional architectural models applicable in various contexts and scales. FORMAT / The program includes an introductory lecture that addresses climate urgencies and potential capacity for change in the context of the built environment the week before the one-day symposium (hybrid format). The symposium brings together practitioners, researchers and educators and consists of five thematic sessions that can be attended as a full day or individually as they are interrelated, yet also function independently (See program link below). INTENDED LEARNING OUTCOMES / Understanding of multi-scalar climate-adapation design approaches within the built environment with a focus on the Nordic context / Reflect on aspects of social sustainability when it comes to transforming buildings and inhabitants from being consumers to becoming producers /   Umeå University School of Architecture   Presentations   Program Nov. 30.     For any questions content-related questions please email us cornelia.redeker@umu.se sara.thor@umu.se constanze.hirt@umu.se  

Djurvälfärd och hållbarhet

Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.

Economic Sustainability- an introduction

Welcome to this course- Economic Sustainability- an introduction.  If you are looking for an introduction to this important topic, then this course is for you! The course begins with an introduction to the Anthropocene, before diving into the subject of economic sustainability. This is explored by a number of angles with supporting literature and quizzes.  This is an introductory course to sustainability science with a focus on economics. It is created by experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Lithuania and Poland.   You have to finish all stages of each module to finish the course. You have unlimited amounts of tries on the quizzes but you have to get every answer right in order to move on.  Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se

Edge computing in robotics

Edge computing enables faster and more energy-efficient data processing directly at the source. In robotics, this can lead to improved performance and sustainability. This course introduces the concept of edge computing and its applications in robotics. Course content • Fundamentals of edge computing• Applications of edge computing in robotics• Energy-efficient solutions for data processing What you will learn • Understand the principles of edge computing• Implement edge computing in robotic systems• Optimize data processing for energy efficiency Who is the course for?The course is designed for engineers, developers, and technicians working with robotics, IoT, and data processing who want to implement energy-efficient solutions in their projects. LanguageThe course is conducted in English. Additional informationThe course includes 15 hours of study and is offered for a fee.

Efficient Sustainable Development Goal fulfilment through collaborative learning and the UNDP 7-Step methodology

This course is a collaboration between Uppsala University and the United Nations Development Programme. Content and learning outcomes The course aims to strengthen participants' capacity to contribute actively to the fulfilment of the UN Sustainable Development Goals, the SDGs, in a complex, ever changing, global society. It will do so by clarifying the context of the SDGs in the international community, and by addressing the needed solutions from a both human and technical approach. The course consists of three modules: Module 1 will provide you with a wider background context to the SDGs and the aim is that following this module you will have gained insight into how humanity is being brought together. You will have received a basic understanding of the framework of the rules-based world order, within which the SDGs are set, how they link to this framework, as well as on how progress is maintained. Module 2 will provide you with collaborative learning tools and methods of co-creation. It will provide insights on why change fails and suggest planning tools and resources to enable transition from the current state to the desired state. It will show how you can apply some of these tools to foster collaborative innovations addressing sustainability challenges. Module 3 will provide you with current-day insights into the United Nations Development Programme, the UN body that manages and follows up the progress of the SDGs. You will be introduced to practical tools used by the organization to promote SDG fulfilment, the UNDP 7-step methodology, exemplified by a special focus on e-mobility. Course structure This online course is stand-alone and completly self paced, but it is also given as an advanced level as a five week course awarding university credits. The online course will take you about 25 h to complete. Who is this course for? The course has been created for those of you who are seeking a more in-depth understanding of the background and international context of the Sustainable Development Goals. It is for those of you who want to work hands-on with sustainable development, to strengthen this capacity, and are interested in both the human and technical side of delivering solutions. Suppose you are interested in the climate agenda and the power of collaboration, as well as curious to learn more about electrification in transportation systems. In that case, this is a course for you.        

Ekonomiska beräkningar och analyser av cirkulära affärsmodeller

Kursen Ekonomiska beräkningar och analyser av cirkulära affärsmodeller är din möjlighet att fördjupa dig i de ekonomiska verktyg och metoder som driver den cirkulära ekonomin framåt. Kursperiod Kursen ges under vårens andra läsperiod och är helt nätbaserad för maximal flexibilitet. Kursens innehåll Kursen ger dig insikter i hur företag kan skapa värde genom att implementera cirkulära affärsmodeller, med fokus på långsiktigt hållbara lösningar och optimering av resurser. Du lär dig använda relevanta verktyg för att göra ekonomiska analyser, från ett kund- och leverantörsperspektiv, och får kunskap om centrala principer som livscykelperspektiv, avskrivningsmodeller och restvärdeshantering. Kursens upplägg Kursen ges under vårens andra läsperiod och är helt nätbaserad för maximal flexibilitet. Föreläsningarna hålls live online, men spelas även in, så att du kan välja om du vill delta i realtid eller ta del av materialet vid en tidpunkt som passar dig bäst. Genom interaktiva online seminarier får du möjlighet att diskutera verkliga case och ekonomiska utmaningar inom cirkulära affärsmodeller. Du kommer få kunskap om Genom denna kurs får du inte bara teoretisk kunskap, utan även praktisk erfarenhet av att analysera och jämföra cirkulära och linjära affärsmodeller – en kompetens som blir alltmer efterfrågad i både näringslivet och den offentliga sektorn. Vem vänder sig kursen till Den är särskilt lämplig för dig som redan har en bakgrund inom ekonomi och vill fördjupa dina kunskaper i mer cirkulära och hållbara affärsstrategier. När du ansöker till kursen måste du visa att du har grundläggande behörighet. Om dina gymnasiebetyg inte redan finns på antagning.se, behöver du ladda upp din gymnasieexamen eller motsvarande där när du ansöker. På kursens sida på liu.se kan du se vilka behörighetskrav som gäller för kursen.

Elektronikens roll inom elektrifiering, AI och energieffektiva beräkningar HT25

Elektronik spelar en allt större roll i mycket av den senaste tekniken, ofta ganska osynlig del i mycket stora system, men kritisk för energiöverföring och energikonvertering (t.ex. i elektriska fordon), eller i energieffektiva system för datorberäkningar, som för AI, mobilnätens infrastruktur, datacenter, m.m. Detta gör elektronik (halvledare) och kunskap inom området till möjliggörare för många delar av ett fossilfritt energisystem. Innehåll Halvledare: grunden för all elektronik, tillverkning, leveranskedjorna som del av världsekonomin. Krafthalvledare i energisystem och för energikonvertering i t.ex. elektriska fordon. Hårdvarulösningar för energieffektiva datorberäkningar, neuromorf teknik. Kursens upplägg Kursen har tre delar (se innehålll), 2-4 föreläsningar per del samt material att läsa in för varje del samt en avslutande inlämningsuppgift (essä). Förinspelade föreläsningar. Diskussionsseminarium online efter varje del (kvällstid, ej obligatoriskt), Inlämningsuppgift (obligatorisk för godkänd kurs). Det krävs en arbetsinsats på cirka 60 h för att slutföra kursen. Du kommer att få kunskap om Användning av halvledare och deras roll i system för fossilfri energi, elektronik för elektriska fordon, tillverkning av halvledare och leveranskedjor, metoder för högre energieffektivitet i hårdvara för beräkningar och AI. Vem vänder sig kursen till? Yrkesverksamma på företag och myndigheter som deltar i eller påverkas av den gröna omställningen till ett fossilfritt energisystem, elektronikens roll och användning i moderna system

Elements of the battery value chain

The battery value chain encompasses the extensive range of processes and industries that contribute to the production and post-use phase of rechargeable batteries for electric vehicles and other applications. Familiarity with all parts of the value chain is important in the growth of the individual parts. A stronger value chain and a greater awareness of its entirety also leads to the development of more sustainable and higher performance batteries that are needed for the ongoing green transition. In this course, we will give an overview of the key activities and industries within the battery value chain, from raw materials to use-phase and recycling. A focus will be on scale-up, linking lab-scale research to production, while additionally considering sustainability aspects in all value chain sectors. Topics Battery value chain overview Sourcing raw materials Critical raw materials and sustainable materials Materials synthesis and scale-up of production Electrode fabrication Cell formats, fabrication, and formation Applications and safety Re-use, recycling, and circularity  Course structure This course is fully digital with pre-recorded lectures. The recordings are in Swedish with English subtitles. You can take part in the course in your own pace. The course will open on Sept 1, 2025. You will learn By the end of the course, you will be able to: identify the key processes and industries of the battery value chain, describe the important practices in each part, and relate certain aspects to your existing knowledge and/or experiences. You will be able to discuss aspects of sustainability for each part of the value chain, how the concept of circularity is important, and how these relate to the development of next-generation batteries. Who is the course for? This course is designed primarily for those active in the vehicle industry or other technical fields that have limited knowledge of batteries or related topics. Participants ideally have an educational or professional background in the natural sciences or technology, but the course can also be interesting for those in geology, social sciences, or with links to any battery-relevant industry.