Search

REEDEAM

REEDEAM is a project where Luleå University of Technology, Mälardalen University and Örebro University, and industry will co-produce education for the business community’s climate transition. The project aims to strengthen cooperation between universities and industry by improving access to demand-driven competence development. REEDEAM also aims to establish long-term cooperation between the universities based on their scientific areas of expertise. A planned research school will provide the business community with greater access to doctoral competence and further strengthen the universities’ cooperation with the surrounding industry and society. Lessons learned, and experiences from the KK Foundation’s expert competence program are integrated to ensure efficiency and quality by creating a cohesive competence offering.

19 RESULTS

Hydrogen jet flames and hydrogen explosions

Do you want to deepen your understanding of hydrogen gas behavior in various scenarios—and at the same time strengthen your role in the green transition? This course provides knowledge of both controlled and uncontrolled reactions in hydrogen systems, with a focus on safety, efficiency, and practical application. The course content is: ·       Unignited releasesExpanded and under-expanded jets ·       Ignition of hydrogen mixturesPiloted and spontaneous ignition ·       Deflagrations and detonationsVented and non-vented deflagrationsVented and non-vented detonationsDDT, deflagration to detonation transition ·       Jet flamesFroude-based correlationsBlow-off phenomenonJet flame characteristics Study hours40 hours distributed over 5 weeks SeminarsNovember, 14th at 11:00-12:30November, 28th at 11:00-12:30December, 12th at 11:00-12:30 Dates and times can be discussed online among participants once the course starts. It is ok to eat lunch during the seminars. Target groupThis course is aimed at professionals working in or entering fields related to safety of hydrogen handling and hydrogen infrastructure. Specifically, it is relevant for engineers and technical professionals in all fields where hydrogen is used. Entry requirementsBachelor's degree of at least 180 ECTS, or equivalent, which includes courses of at least 60 ECTS in engineering and/or natural sciences. Alternatively other courses and practical experience. The latter can be validated through an interview or written test. ExaminationIn order to pass the course the student must:- Attend the three compulsory online meetings.- Write an essay which is reviewed by other students and approved by the teacher.- Pass four compulsory quizzes. Education providerLuleå University of TechnologyTeacher: Michael Först

Hydrogen production

As an energy carrier, hydrogen plays a crucial role in decarbonization and the future of a low-carbon society, where hydrogen production is one of the most important steps in the hydrogen chain. Hydrogen itself can be produced from different processes, and different colors were used to identify the environmental impact, where green hydrogen has been identified as the best in the future. However, the green hydrogen covers only about 1% of the world's production, even with increasing interest. Therefore, learning more about the green hydrogen production will be essential to reach the goal. In the course of hydrogen production, different technologies will be briefly discussed, and the green hydrogen production via water electrolysis or biomass gasification will be the focus, where the principle, component, process, together with sector coupling, will be discussed, and the state-of-the-art and the potential will be covered. To combine with specific implementation and special interests, one seminar, together with a report, will be arranged. It is expected that after this course, basic knowledge of hydrogen production technologies as well as their state-of-the-art and challenges will be clarified; Specific knowledge on the green hydrogen product from principle to the process will be provided, and the students can propose their ideas on how to promote green hydrogen production. Course StartSeptember, 22nd 2025 Seminars- September, 22nd 2025 at 13:00- Week 41, date and time to be decided- October 24th, 2025 at 13:00 Study hours40 hours over 4 weeks time Target GroupThis course is aimed at professionals working in or entering fields related to energy, sustainability, and environmental technologies and is especially beneficial for those with an interest in green hydrogen production and its practical implementation within the broader context of a low-carbon society. Specifically, it is relevant for: Engineers and technical professionals in the energy sector who want to deepen their understanding of hydrogen technologies. Researchers and scientists focused on renewable energy, decarbonization, or green technologies. Policy makers and energy consultants involved in shaping or advising on energy transition strategies. Project managers and business developers working in the development or implementation of hydrogen-based projects. Graduate students and academic professionals pursuing advanced studies or research in energy systems, chemical engineering, or environmental science. Entry RequirementsMOOC Hydrogen for sustainable solutions. Other courses or practical experience. This can be validated through and interview or written test. Please note that the number of participants for this course is limited, so we encourage you to apply as soon as possible! Education providerLuleå University of TechnologyTeacher: Xiaoyan Ji

Intelligent Asset management and Industrial AI

In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability. Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition. This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals. Course StartThe course starts in the spring of 2026, more information will follow.Applications are made via www.antagning.se between 2025-09-15 and 2025-10-15. Target groupThe target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants. Online seminarsFive onlineseminars, dates will be presented later. Entry requirements Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent. Or professional experience requirements four to five years of experience in relevant industries.

Intelligent Sensor Systems for Green Transition

This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges. The students bring their own case study example as the background for a practical project, through which the student is also finally examined. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Course dates: 13 Januari : Introduction10 Februari: Project Idea17 March: Project Presentation Study hours: 80 This course is given by Örebro University.

Introduction to principles of hydrometallurgy

Hydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. Study hoursHydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. SeminarsSeminar lab: December 10th 2025 at 16:00-18:00 Seminar assignments: January 14th 2026 at 16:00-18:00 Entry reqirements180 credits in science/technology, including a basic course in chemistry of 7.5 credits (e.g. Chemical Principles, K0016K). Good knowledge of English, equivalent to English 6 or equivalent real competence gained through practical experience. Target groupProfessionals in industry, academia or institute, everyone that fulfills the criteria is welcome but the course is created for further education.

Product development for circular flows

Product development that efficiently contribute to reduction of material use and waste is key to successful transition towards sustainability. The aim of the course is to give the student a deeper understanding of product development for circular flows. Through this course, you will explore the critical relationship between sustainable practices and product development strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for product development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various practices in different types of product development work. The objective is for course participants to enhance their ability to understand and apply product development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours 40 study hours; four seminars and self studies. Seminar 1: September 22nd, at 1500-1600Seminar 2: October 6th, at 1500-1600Seminar 3: October 20th, at 1500-1600Seminar 4: November 10th, at 1500-1600 Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThe course Product/production and business development for circular flows is an introduction of the educational package starting again spring 2024 and will also run spring 2026. This course: Product development for circular flow together with Business developmetent for circular flow (starting January 13) Product development for circular flows (starting April 28) are free standing independent courses that build on knowledge in the field.

Product, production and business development for circular flows

Skills in development work are becoming increasing importance in professional life. This course offers you the opportunity to develop knowledge and skills in product development, production development, and business development, as well as the relationship between these areas. You will be introduced to systematic working methods for product development, production development, and business development, with a specific focus on innovation and creativity in practical contexts. The goal of the course is to provide a deep understanding of the application of various processes in different types of development work. The objective is for course participants to enhance their ability to understand and apply development processes and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability in the manufacturing industry. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are incuded. Course StartThe course starts in the spring of 2026, more information will follow.Applications are made via www.antagning.se between 2025-09-15 and 2025-10-15. Study hours 40 hours distributed over 7 weeks. Target GroupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry RequirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 ntry Requirementscredits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThis course Product/production and business development for circular flows is an introduction of the educational package. The courses Business development for circular flow, Product development for circular flows and Production for cirkular flows are free standing independent courses that build on knowledge in the field. Link to Syllabus Please note that the number of participants for this course is limited, so we encourage you to apply as soon as possible!

Production development for circular flows

Production development that efficiently contribute to reduction of material use and waste are key to successful transition towards sustainability. The aim of the course is to give the student a deeper understanding of production development for circular flows. Through this course, you will explore the critical relationship between sustainable practices and production development strategies, preparing you to contribute meaningfully to the circular economy and sustainable development initiatives. In this course, you will be introduced to systematic working methods for production development in practical contexts, with a specific focus on innovation and creativity. The goal of the course is to provide a deep understanding of the application of various practices in different types of product development work. The objective is for course participants to enhance their ability to understand and apply production development processes in the manufacturing industry and gain deeper insights into how these processes relate to organizations' innovation and business strategies in order to achieve circular flows, resilience, and sustainability. The teaching consists of self-study using course literature, films, and other materials through an internet-based course platform, as well as scheduled webinars and written reflections. There are no physical meetings; only digital online seminars are included. Study hours 40 study hours; four seminars and self studies. Seminar 1: October 6th, at 1215-1300Seminar 2: October 13th, at 1215-1300Seminar 3: October 27nd, at 1215-1300Seminar 4: November 17th, at 1215-1300 Target groupThis course is primarily intended for engineers in management or middle management positions within industry, whether they are recent graduates or individuals with extensive experience. The course is suitable for individuals with backgrounds in mechanical engineering, industrial engineering management, or similar educational background. Entry reqirementsTo be eligible for this course, participants must have completed courses equivalent to at least 120 credits, with a minimum of 90 entry Requirement credits in a technical subject area, with at least a passing grade, or equivalent knowledge. Proficiency in English is also required, equivalent to English Level 6. Educational package in circular economyThis course Production development for circular flowis part of an educational package in circular ecconomy. The other courses are Product/production and business development for circular flows (starting spring 2026), Business development for circular flows (starting spring 2026), Product development for circular flows (starting August 28th 2025).

Smart Production

Would you like to know what smart production is about? Then this is a course for you! In the course, we look at enabling technologies within advanced and smart production systems from an industrial perspective. We will cover how recent advancements in technologies such as 3D printing, computer vision, IoT, AI and robotics can be leveraged in designing new and better production flows. Focusing on how advanced production systems can be set up to allow for greater flexibility in production, both in terms of handling different unit variants and production volumes. There will also be an opportunity in the individual projects to deep dive into how these technologies could fit into your company’s needs, focusing on both the potential benefits and challenges these technologies would entail. The course covers many topics, and you will learn the basic terminology related to discrete and rapid production, connected factories and automation in assembly. You will get insight and understanding of industrial competitiveness and how it affects industry and individuals. The course work will consist of three online seminars, a project report and independent work. Examples of professional roles that will benefit from this course are manufacturing engineers, production managers and automation engineers. This course is given by Mälardalen university in cooperation with Luleå University of Technology.