Our 20,000 students read courses and study programmes in Business, Health, Engineering and Education. We conduct research within all areas of education and have internationally outstanding research in future energy and embedded systems. Our close cooperation with the private and public sectors enables us at MDU to help people feel better and the earth to last longer. Mälardalen University is located on both sides of Lake Mälaren with campuses in Eskilstuna and Västerås.
9 RESULTS
SHOW
SORT BY:
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
Learn about digital twins and how they can be used in smart production! A digital twin is used to create a virtual model of a real production system. Among other things, it can be used to simulate how the product will be manufactured, how materials flow and how machines move. The course gives you knowledge of industrial digital twins and their application within the framework of smart production. The course is given with flexible start and study pace, but we recommend a study pace of 20%, which means that the course takes about 8 calendar weeks.
Do you want to deepen your knowledge in Industrial Internet of Things? In this course, you will gain deeper knowledge and understanding of the Industrial Internet of Things (IIoT), platforms and cloud services used in manufacturing industries. You will learn to understand the use of IoT platforms and how to design and implement simple systems and how to create value by using IoT solutions within industrial systems. The course will provide you with practical and theoretical knowledge in IIoT, platforms and cloud services as well as in-depth knowledge in production, logistics and product development.
This course provides a fundamental knowledge of IoT, targeting physical devices, communication and computation infrastructure. The course gives theoretical knowledge as well as hands-on experiences to build an IoT application.
The course has the objective to provide proficiency in cybersecurity analysis and design in industrial settings, with a special focus on smart factories and Industry 4.0. To that aim, you will learn about advanced cybersecurity concepts, methodologies and tools. You will also be able to apply your knowledge to case-studies of industrial relevance.
Learn how to improve industrial processes with modelling methods! Modeling is used to create a virtual representation of a real product. With the help of the model, you can study how the product works, test different options and evaluate the product before it is produced in reality. In this course, you gain knowledge on how to design and implement simulation models in the work of analyzing and improving production systems. You will learn how to plan and perform improvement studies, as well as apply the modeling process within the manufacturing industry. The course is given with flexible start and study pace, but we recommend a study pace of 20%, which means that the course takes about 8 calendar weeks.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.
AI systems are increasingly being integrated into various industrial processes, including manufacturing, logistics, and autonomous vehicles. Trustworthy AI ensures that these systems operate reliably, reducing the risk of accidents or costly errors. Trustworthy AI helps companies comply with ethical standards and legal regulations. It ensures that AI systems do not discriminate against certain groups, violate privacy rights, or engage in other unethical behaviors. Trustworthy AI System course can support in the development of more advanced AI technologies, fostering research collaboration, and attracting talent.