COURSE DESCRIPTION
The course High-Performance Computing provides participants with the necessary tools and skills to navigate large-scale computing infrastructures, emphasizing scalability and performance optimization. Large computing infrastructures can be the key to driving the industry’s green transition. The course recognizes the instrumental role of large computing infrastructures in facilitating a green industry transition, enabling industrial actors to reduce environmental impact and optimize resource utilization, aiming to minimize energy consumption. The course covers concepts such as enabling technologies (e.g., CUDA), distributed computing, multi-core architectures, hardware versus software acceleration, container solutions(e.g., Docker and Kubernetes), as well as metrics and tools for monitoring performance and memory management, providing participants with a comprehensive skill set to lead environmentally responsible solutions in the digital era.
Scheduled online seminars
November 18th 2024, 14:30 – 16:00
December 9th 2024, 14:30 – 16:00
December 20th, 2024, 14:30 – 16:00
January 13th, 2025, 14:00 – 16:00 Presentations of the tasks
Entry requirements
At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.
This course will teach you how to build convolutional neural networks. You will learn to design intelligent systems using deep learning for classification, annotation, and object recognition.
This course provides a fundamental knowledge of IoT, targeting physical devices, communication and computation infrastructure. The course gives theoretical knowledge as well as hands-on experiences to build an IoT application.
This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.
In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.
This course makes you acquainted with the concept of systems-of-systems (SoS), which means that independent systems are collaborating. It gives you an understanding why SoS is an important topic in the current digitalisation and provides a theoretical and practical foundation for understanding important characteristics of SoS. It also gives you a deeper knowledge in a number of key concerns that need to be considered when engineering SoS. Admitted students may join the course any time between September 2 and October 6, 2024. With the recommended study pace of 25%, the course would take approximate seven calendar weeks to complete. Higher or lower study pace is possible as long as the course is finished no later than January 19, 2025.