Search

Mälardalen University

Our 20,000 students read courses and study programmes in Business, Health, Engineering and Education. We conduct research within all areas of education and have internationally outstanding research in future energy and embedded systems. Our close cooperation with the private and public sectors enables us at MDU to help people feel better and the earth to last longer. Mälardalen University is located on both sides of Lake Mälaren with campuses in Eskilstuna and Västerås.

Automated Test Generation

This course provides an understanding of automating software testing using program analysis with the goal of intelligently and algorithmically creating tests. The course covers search-based test generation, combinatorial and random testing while highlighting the challenges associated with the use of automatic test generation. You will learn: Understand algorithmic test generation techniques and their use in developer testing and continuous integration. Understand how to automatically generate test cases with assertions. Have a working knowledge and experience in static and dynamic generation of tests. Have an overview knowledge in search-based testing and the use of machine learning for test generation.

Data Analytics in Virtual Production

In this course, you will learn how data analysis in virtual production can improve your organization's results! Data analytics in virtual production uses advanced techniques to collect, analyze and present data to improve production. This system is designed to help companies optimize their production and increase efficiency. By learning how to model, do scenario analysis and evaluate using industrial software, identify bottlenecks, and use AI methods and applications, you will get all the tools necessary to succeed with a full production analysis. The course is given with flexible start and study pace, but we recommend a study pace of 20 %, which means that the course takes about 8 calendar weeks.

Deep Learning for Industrial Imaging

This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.

Fail-safe Design Concepts

Today, many industries face an increased demand for designing dependeble systems witch encounters various challenges, including more complex electronics and software-intensive systems. In the course, we will discuss different types of faults and possible sources of faults (technology, human and environment). Different types of faults are handled with different fault tolerance mechanisms, which are discussed for systems, hardware and software components. The course provides a solid foundation for understanding how to design fail-safe systems. The goal is to provide you with a toolbox of concepts for fail-safe design for both hardware and software so you can understand the rationale for appropriate mitigation strategies. The course is suitable for both engineers and students.

Functional safety of Battery Management Systems (BMS)

This course is designed for you who wants to learn more about functional safety of battery management systems. The course will also cover other aspects of safety such as fire safety in relation to Rechargeable Energy Storage Systems (RESS) and associated battery management systems. In the course you will be able to develop skills in principles of battery management systems, functional Safety as well as of other aspects of safety such as fire safety, hazard identification, hazard analysis and risk assessment in relation to battery management systems. The course also provides a broader understanding of the multifaceted nature of safety. The course is given with a low study pace. This course is primarily intended for engineers that need to ensure that battery management systems are safe, reliable, and compliant with industry standards. The course is suitable for individuals with backgrounds in for example functional safety, battery systems, automotive or risk assessment.  

Fundamentals of Industrial Cybersecurity

In this course, you will be made aware of the state-of-the-art in cybersecurity research and state of practice in industry. Cybersecurity vulnerabilities are a threat to progress in the business sector and society. This is an accelerating threat due to the current rapid digitalisation, which in manufacturing is termed Industry 4.0. Companies are aware of this threat and realise the need to invest in countermeasures, but development is hampered by lack of competence.  

Introduction to IoT Infrastructures

This course provides a fundamental knowledge of IoT, targeting physical devices, communication and computation infrastructure. The course gives theoretical knowledge as well as hands-on experiences to build an IoT application.

Methods and Tools for Industrial Cybersecurity

The aim of the course is to provide proficiency in cybersecurity analysis and design in industrial settings, with a special focus on smart factories and Industry 4.0. To achieve this, you will learn about advanced cybersecurity concepts, methodologies and tools. You will also be able to apply your knowledge to industrial case studies.

Modelling in Virtual Production

Learn how to improve industrial processes with modelling methods! Modeling is used to create a virtual representation of a real product. With the help of the model, you can study how the product works, test different options and evaluate the product before it is produced in reality. In this course, you gain knowledge on how to design and implement simulation models in the work of analyzing and improving production systems. You will learn how to plan and perform improvement studies, as well as apply the modeling process within the manufacturing industry. This is a course with a flexible start: The course is given with flexible start and study pace, but we recommend a study pace of 20%, which means that the course takes about 8 calendar weeks.

Predictive Data Analytics

The course aims to give insights in fundamental concepts of machine learning for predictive analytics to provide actionable, i.e., better and more informed decisions in, forecasting. It covers the key concepts to extract useful information and knowledge from data sets to construct predictive modeling. The course includes three modules: Introduction: overview of Predictive data analytics and Machine learning for predictive analytics. Data exploration and visualization: presents case studies from industrial application domains and discusses key technical issues related to how we can gain insights enabling to see trends and patterns in industrial data. Predictive modeling: consists of issues in construction of predictive modeling, i.e., model data and determine Machine learning algorithms for predicative analytics and techniques for model evaluation.

Quality assurance - Model based testing in practice

This course deals with model-based testing, a class of technologies shown to be effective and efficient in assessing the quality and correctness of large software systems. Throughout the course the participants will learn how to design and use model-based testing tools, how to create realistic models and how to use these models to automate the testing process in their organisation.

Statistical Analysis in Industrial Systems

In this course you will learn state-of-the-art statistical modelling for the purpose of analysing industrial data. The course also presents the basics of relational databases and data manipulation techniques needed to prepare the data for analysis.